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Gaussian Processes are powerful tools in machine learning which offer wide applicabil-
ity in regression and classification problems due to their non-parametric and non-linear
behavior. However, one of their main drawbacks is the training time complexity which
scales cubically with the number of samples. Our work addresses this issue by combin-
ing Gaussian Processes with Randomized Decision Forests to enable fast learning. An
important advantage of our method is its simplicity and the ability to directly control
the trade-off between classification performance and computation speed. Experiments on
an indoor place recognition task show that our method can handle large training sets in
reasonable time while retaining a good classification accuracy.

Introduction

Gaussian process (GP) based machine learn-
ing techniques have recently gained much at-
tention in the field of pattern recognition and
computer vision, since they provide an ele-
gant Bayesian framework and offer state-of-
the-art recognition performance [1]. However,
one non-negligible disadvantage of the full GP
framework is the time (and memory) require-
ment during learning which scales cubically
(and quadratically) with the size of the training
data. This fact hinders their use for large scale
classification tasks which often occur in object
and scene recognition scenarios [2].

In the last decade, Randomized Decision
Forests (RDF) [3], which are an extension of
Decision Trees, became an increasingly impor-
tant tool for large scale classification problems.
RDFs are basically constructed from classifiers
which linearly separate the input space. This
simplicity allows for fast learning and testing
times but also often accompanies a loss of clas-
sification accuracy compared to state-of-the-art
classification methods such as Support Vector
Machines (SVMs) or Gaussian process classi-
fiers (GPCs).

In this paper we present a learning scheme
which combines the benefits from GPCs and
RDFs. Previous work trying to speed up GP
classification use unsupervised kd-trees [4] ne-

Fig. 1. An outline of our approach: RDF is used
to cluster the data in a supervised manner and
a GP classifier is used to separate classes in
each leaf node.

glecting label information during clustering.
One alternative approach is to enforce some
conditional independence structure between la-
tent variables [5]. Other interesting ways for
speeding up GP inference can be found in Ras-
mussen et al. [6]. Our idea is related to [7]
which combines GP and Bayesian decision tree
models [7]. In contrast we use Random Deci-
sion Forests which offer an easy tunable trade-
off between speed and performance.



The remainder of the paper is organized as
follows. We briefly review classification and
regression with Gaussian processes, which is
followed by describing Randomized Decision
Forests. The subsequent sections detail our ap-
proach of combining these two classifiers and
experimentally demonstrate the benefits of this
method on a place recognition task [8]. A sum-
mary of our findings and a discussion of future
research directions conclude the paper.

Classification with Gaussian Process Priors

In the following we will briefly review Gaus-
sian process regression and classification. Due
to the lack of space, we concentrate on the
main model assumptions and the resulting pre-
diction equation. For a presentation of the full
Bayesian treatment we refer to Rasmussen and
Williams [6].

Given n training examples xi ∈ X , which
denote input vectors (e.g. images), and corre-
sponding binary labels yi ∈ {−1, 1}, we would
like to predict the label y∗ of an unseen exam-
ple x∗. The goal in classification is to find the
intrinsic relationship between inputs x and la-
bels y. It is often assumed that the desired map-
ping can be modeled by y = f(x) + ε, where
f is a noise-free latent function (which is not
observed during training) and ε denotes a noise
term. One common modelling approach is to
assume that f belongs to some parametric fam-
ily and to learn the parameters which best de-
scribe the training data. However, the main ben-
efit of the GP framework is the ability to model
the underlying function f directly, i.e. without
any fixed parameterization (since all parameter
configurations are taken into account).

The two main modelling assumptions for
Gaussian processes classifiers are as follows:

1. The latent function f is a sample from a
Gaussian process (GP) prior

f ∼ GP(0,K(·, ·))

with zero mean and covariance or kernel
function K.

2. Labels y are conditionally independent
given latent function values f(x) and
are described using some noise model
p(y | f(x)).

The Gaussian process prior enables to model
the correlation between labels using the simi-
larity of inputs, which is described by the kernel
function. It is thus possible to model the com-
mon assumption of smoothness, i.e. that similar
inputs should lead to similar labels. For clas-
sification purposes often sigmoid functions are
employed as noise models [6]. In contrast, we
will follow Kapoor et al. [1] and use zero-mean
Gaussian noise with variance σ2

n:

p(y | f(x)) = N (y | f(x), σ2
n) (1)

which is the standard assumption for GP regres-
sion. The advantage of this label regression ap-
proach is that tractable predictions for unseen
points x∗ are possible, without using approxi-
mative inference methods [6].

Let K be the kernel matrix with pairwise
kernel values of the training examples Kij =
K(xi,xj) and k∗ be kernel values (k∗)i =
K(xi,x∗) corresponding to test example x∗.
The most likely outcome ȳ∗ given input x∗ and
labeled training data can then be predicted ana-
lytically using the following equation:

ȳ∗(x∗) = kT
∗ (K + σ2

nI)−1y . (2)

Applying the one-vs.-all strategy in combina-
tion with a majority voting scheme, multi-class
classification problems can be solved without
much additional effort [1].

Randomized Decision Forest

In contrast to GP techniques, a Randomized
Decision Forest (RDF [3]) is an ensemble clas-
sifier that can handle large sets of training ex-
amples of high dimensionality. This advantage
is mainly due to the simplicity of the linear base
classifiers (decision stumps) which cluster the
feature space. Compared to standard decision
tree approaches, which suffer from severe over-
fitting problems, a RDF is an ensemble (forest)
of T decision trees generated using randomized
learning techniques [9]. Each tree is learned
with only a random fraction of the available
training data and the data is recursively split by
axis orthogonal hyperplanes which are learned
by maximizing the information gain of a ran-
domly selected feature set. The procedure is
stopped if the current set contains only exam-
ples of a single class or the number of examples
falls below a certain value l.



To classify a new example x∗, each tree t
in the ensemble is traversed until a leaf node
vt(x∗) is reached. Each such leaf node contains
a histogram which describes the posterior prob-
ability p(y∗ = κ|vt(x∗)) obtained during learn-
ing. The final posterior probability is then esti-
mated by simple averaging over all leaf proba-
bilities:

p(y∗ = κ|x∗) =
1

T

T∑
t=1

p(y = κ|vt(x∗)) . (3)

Combining RDF and GP

For speeding up vanilla GP classifiers, we
propose to efficiently combine RDF and GP.
In principle, GP classifiers can be utilized as
weak classifiers in each node of the under-
lying decision trees. This strategy, however,
would even amplify the computational cost of
the learning algorithm. The main idea of our
approach is thus to learn a RDF whose inner
nodes are simple decision stumps — only leaf
nodes are equipped with powerful GP classi-
fiers. This allows to describe the posterior dis-
tribution in each leaf using a non-linear decision
function and to achieve a significant speed-up
due to the clustering of the training data per-
formed by the RDF. From a different perspec-
tive, we are constructing an ensemble of GP
classifiers where each single classifier is trained
on a pre-clustered subset of examples (and fea-
tures). These subsets are given by Xv = {xi ∈
X |vt(xi) = v}, i.e. the training data reaching
the corresponding leaf nodes v. Upper bounds
of this method for training and learning are
listed in the table, where n is the number of
training samples, T is the number of trees and l
is the maximum number of examples in a leaf.

Table: Computational Complexity
training testing

GP O(n3) O(n)
RDF O(Tn log n) O(T log n)
RDF-GP O(Tn log n+ Tnl3) O(T log n+ T l)

Experiments

Our method is assessed using the place
recognition database utilized in [8] which com-
prises seven different room categories. The au-
thors of [8] originally utilized 2 sequences (697

samples), captured by a mobile robot, for train-
ing and 6 sequences (2759 samples) for testing.
Since our work focuses on learning with large
quantities, we swap both sets and thus use the
larger fraction for learning the respective classi-
fier models. In our experiments we empirically
support the following hypotheses:

1. RDF-GP clearly outperforms the standard
RDF which only uses decision stumps

2. RDF-GP is substantially faster than the full
GP classifier approach

In our experimental setting, we followed [8]
and employed a combination of different
image-based features using both a standard
camera and a time-of-flight sensor. For both
sensors, the following features are computed: 1)
a bank of reduced Gabor filter responses with
8 different orientations and 4 different scales
and 2) 16 slopes and offsets of oriented fourier
power spectra. For range images, additional in-
formation in terms of 3) range histograms and
4) surface normal histograms are taken into ac-
count. All features are concatenated and thus
treated as one large feature vector. As co-
variance functions, we used the common RBF-
kernel:

K(x,x′) = exp
(
−γ||x− x′||2

)
(4)

where γ denotes the bandwidth parameter of the
kernel.

For comparison of RDF, GP classifier and our
combined approach from the previous section
(RDF-GP), average recognition rate is used as
an unbiased accuracy measure. In our setting,
we utilized RDFs with 5 decision trees and a
varying number l ∈ {5, 6, . . . , 200} of maxi-
mum examples in leaf nodes. The hyperparam-
eter of the RBF-kernel is set to γ = exp(5.0) in
all experiments.

The results of all methods for the place recog-
nition scenario are illustrated in Fig. 3. It can
be seen that the GP classifier performs best and
RDF clearly exhibits inferior performance com-
pared to the other methods (Recognition rates
for l = 100 are not displayed for RDF, since no
improvement is made with an increasing num-
ber of examples in leaf nodes). By augmenting
the RDF with GP classifiers in each node, how-
ever, progress in terms of accuracy is achieved.
It can be nicely seen that the accuracy increases
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Fig. 2. Average recognition rate for Gaussian
Processes, Randomized Decision Forests and
RDF-GP (measured in percent).

with increasing l which is due to the fact that
more and more training examples are fed into
the GP classifiers located in the leaf nodes.

In order to compare the complexity of the
respective methods, the runtime behavior for
training and testing is investigated. The results
on a standard office computer (2.80 GHz) are
depicted in Fig. 3, where training and testing
times are summed up to yield one final value.
It becomes clear that, compared to the full GP
classifier, RDF and RDF-GP have a substan-
tial runtime advantage. This behavior nicely il-
lustrates the complexity bounds from the table,
where RDF and RDF-GP have similar complex-
ity for a moderate number of examples in the
leaf nodes.

Conclusions and Further Work

This work presents a new approach for boost-
ing the runtime of Gaussian Process (GP) clas-
sifiers, where Randomized Decision Forests are
used to compute a pre-clustering of the input
space. We empirically validate the combined
method on a place recognition task. While
retaining a moderate amount of accuracy, our
method shows to be substantially faster than the
full GP classifier.

In the future, we are planning to do an in-
depth runtime analysis for learning with large-
scale databases like Imagenet [2]. Further re-
search has to be done by analyzing the memory
requirements of our method. Since the size of
the covariance matrix scales quadratically with
the number of training examples, but only a few
correlations needs to be taken into account, a
benefit from our method is expected. The prin-
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Fig. 3. Average computation time for Gaussian
Processes, Random Forests and RDF-GP (mea-
sured in seconds).

ciple of our method is very general and allows a
variety of methods to be used as leaf classifiers.
It would be hence interesting to analyze other
types of learners and to investigate the combi-
nation of our method with existing sparse GP
approaches.
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