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Abstract. Vector-quantized local features frequently used in bag-of-
visual-words approaches are the backbone of popular visual recognition
systems due to both their simplicity and their performance. Despite their
success, bag-of-words-histograms basically contain low-level image statis-
tics (e.g., number of edges of different orientations). The question remains
how much visual information is lost in quantization when mapping vi-
sual features to code words? To answer this question, we present an
in-depth analysis of the effect of local feature quantization on human
recognition performance. Our analysis is based on recovering the visual
information by inverting quantized local features and presenting these vi-
sualizations with different codebook sizes to human observers. Although
feature inversion techniques are around for quite a while, to the best of
our knowledge, our technique is the first visualizing especially the effect
of feature quantization. Thereby, we are now able to compare single steps
in common image classification pipelines to human counterparts1.

1 Introduction

Traditionally, standard image classification systems follow a typical architecture:
(1) pre-processing, (2) feature extraction, and (3) training and classification. A
significant number of current image categorization methods still follows the bag-
of-visual-words (BoW) approach for feature extraction: local features on a dense
grid (e.g., SIFT) are extracted and grouped by (un)supervised clustering for
codebook creation (e.g., k-Means), which then allows for assigning local features
to groups and for forming histograms that can be used as image representa-
tions [1,2,3,4,5,6]. The popularity of the BoW strategy is also apparent when
looking at the list of Pascal VOC submissions [7], where the majority of recog-
nition systems can be perfectly mapped to the above outlined pipeline.

Clustering of local features has most often been motivated by the analogy
of words for text categorization [1]. However, the discovered clusters usually
correspond to blob-like objects being semantically poor, and the power of re-
sulting image representations stems from informative statistics rather than from
interpretable semantic parts.

1 An abstract version of this paper was accepted for the ICPR FEAST Workshop.
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Fig. 1. The long way from an image to its bag-of-visual-words representation. In this
paper, we aim at visualizing the loss of information during vector quantization.

In the following paper, we like to see behind the BoW curtain by inspecting
how much information is usually lost in vector quantizing local features to pre-
computed codebooks. We believe that our analysis is valuable for researchers
trying to improve BoW models as well as for developers who try to build a
good image recognition system. Therefore, we present a new method that inverts
quantized local features and visualizes the information loss during this process
(see Fig. 1 for a vizualisation thereof). Our inversion method is easy to implement
and builds upon the work of [8], where histogram of oriented gradient (HOG)
features are inverted to study the visual information loss occurring during feature
extraction. In contrast to previous work in this area [9,8], we focus on the effects
of vector-quantization within the BoW model and to our knowledge, we are
the first qualitatively and quantitatively studying this aspect by asking human
observers about estimated image content after inversion.

2 Related work

A brief history of bag-of-visual-words The bag-of-visual-words model
goes back to [1], where it was first shown that histograms built on vector quan-
tized local features are highly suitable for object recognition tasks. Forming a
single histogram by spatially pooling quantized features over the whole image
and discarding any spatial information was regarded as efficient option for ob-
taining occlusion-invariant features. It was the common understanding at this
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time that interest point detectors are necessary to select only local features
at certain positions which are also suitable for image matching. Later on, [10]
showed that this is not the case and that dense and random selection of local
features allows for larger BoW descriptors and also for higher recognition rates.
The evaluation paper of [11] further studied the influence of detector invari-
ance properties and demonstrated that, for example, invariance with respect to
rotations and affine transformations explicitly hurts recognition performance.

The authors of [12] and [2] showed how pyramid matching and simple spatial
pooling allows further performance boosting by re-incorporating rough spatial
information of local features. The importance of a proper feature encoding with a
given codebook was highlighted in [13], where it was shown that the actual choice
of cluster method does not influence recognition results significantly and even a
random clustering is sufficient. The most important contributions in the area of
feature encoding are the work of [14], where soft quantization was first proposed,
as well as the paper of [15], where the authors developed an encoding method
based on Fisher vectors, and the locality-constrained linear coding (LLC) method
of [3]. The key idea of the LLC method is to use only the k nearest neighbors in
a codebook for encoding.

Image reconstruction from local features Reconstructing an image from
a given feature recently gained attention within our community to better un-
derstand learned models. In one of the first works within this area, the authors
of [9] propose a technique to reconstruct an image from densely extracted SIFT
descriptors. How to invert local binary patterns used for the task of face identi-
fication was introduced by [16]. Noteworthy, the authors have not been directly
interested in inspecting feature capacity or learned models, but pointed to the
problem that local features still contain lots of visual information and thus can
be critical from a juristic point of view for face identification systems. A visual-
ization technique for popular HOG features was given in [8] which allowed for
insights why object detectors sometimes fire at unexpected positions. The work
most similar to the current paper was recently published in [17], which aims at
inverting a given bag-of-visual-word histogram by first randomly arranging pro-
totypes and then optimize their positions based on adjacency costs. Since [17]
measures inversion quality only in terms of reconstruction error to the original
images, it would be interesting to combine their inversion technique and our
evaluation method based on asking human observers.

Outline of this paper The remainder of the paper is structured as follows:
Our simple yet insightful inversion technique is presented in Sect. 3. We then
provide a detailed comparison between machine learning performance and hu-
man performance for the task of scene categorization in Sect. 4, and present our
webpage for accessing the evaluation server and participating in the large-scale
study. A summary of our findings in Sect. 5 conclude the paper.
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Fig. 2. How does the size of extracted local features influence the visual quality when
using our inversion technique? From left to right: patch sizes are 16 px, 32 px, 64 px,
and 128 px, respectively.

3 Unbagging bag-of-visual words: visualizing quantization
effects

Our technique is simple and in line with current trends for image reconstruc-
tion from local features [9,16,8]. For an unseen image, we extract local features
on a dense grid and follow the bag-of-words paradigm by quantizing them us-
ing a pre-computed codebook. Based on inversion techniques for local features
(see [9,16,8] for impressive results), we can compute the most probable image
patch for every prototype, i.e., we can visually inspect the quantization quality
for a given codebook. Thus, for any local feature x, we vector-quantize it with
a codebook and draw the inverted prototype into the reconstruction image with
position and size according to the support of the extracted local feature. The
complete pipeline of BoW-computation is visualized in Fig. 1. In contrast to
previous works for feature inversion, which aim at inspecting the image in the
top-right corner, out techniques is designed for inspecting the following step and
consequently aims at visualizing quantization effects. It should be noted that
for the simplicity of demonstration, we chose HOG-features where inversion was
successfully presented in [8] and source code is publicly available. However, our
method is not restricted to HOG-features and can be applied to any local feature
type where inversion techniques are known for (e.g., [9,16]). Our source code is
available at http://www.inf-cv.uni-jena.de/en/image_representation.

Effect of local patch sizes With the inversion method at hand, we can
investigate the dependencies between several variables during feature extraction
and the resulting visual quality. Let us first look at the effect of feature extraction
support, i.e., sizes of patches local features are extracted from, on the resulting
visual quality when using our inversion technique. In Fig. 2, inversion results
are displayed for increasing patch sizes for local feature extraction. For region
sizes too small, extracted features can hardly capture any high-level statistics,
and thus the resulting inversion looks heavily ’cornered’. On the other hand,
for regions too large, extracted local features are highly diverse, and negative
aspects of quantization become visible.
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Fig. 3. How does the stride width for local feature extraction influence the visual
quality when using our inversion technique? From left to right: stride of 2 px, 4 px,
8 px, and 16 px, respectively.

Effect of patch stride As a second aspect, we investigate the effect of stride
width during local feature extraction on visual quality of reconstructed images.
For different strides between 2 px and 16 px, reconstruction results are given in
Fig. 3. As can be seen, small stride widths tend to average out high-frequency
parts, whereas higher strides result in edge artifacts at the boundaries of ex-
tracted local patches.

In summary, depending on the local features and inversion method at hand,
we can easily inspect dependencies of parameter settings on the visual quality.
Thus, we can implicitly estimate which parameter configuration preservers or
neglects certain kinds of information present in original images.

4 Experimental evaluation

Our experiments are based on a scene classification task and in particular, we use
the 15 Scenes dataset of [18]. This task was chosen, because it is also difficult for
human observers due to the moderate number of classes (see human performance
on original images in Sect. 4.2) and the fine-grained details that are necessary
to distinguish between different scene categories, e.g., street vs. highway.

4.1 Machine learning baseline

Local features are extracted from overlapping 64× 64 image patches on a dense
grid with a stride of 8 pixel and zero padding on image borders. As underlying
representations, we choose the commonly used variant of HOG-features as pre-
sented in [19]. In general, 4× 4 HOG blocks are computed resulting in D = 512
dimensional features. Clustering is done using the k-Means implementation of
VLFeat [20]. All classes are learned with 100 images during training for the 15
Scenes dataset. Classification is performed using LibLinear [21] and explicit ker-
nel maps [5] to increase model complexity (χ2-approximation with n = 3 and
γ = 0.5 as suggested by [5]). All classification results presented are averaged
over 25 random data splits. Regularization parameters are optimized using 10-
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Fig. 4. Overview of the images presented to human observers during the experiment
(15 Scenes dataset).

fold cross-validation. For further details, we point to the source code released on
the project page2.

4.2 Experimental setup for human experiments

Since the scene recognition task was unknown to most of our human observers, we
showed them example images for each category in the beginning similar to Fig. 6.
Afterward, human subjects needed to classify new images and we randomly
sampled visualizations with different quantization levels (original image, inverted
HOG image without quantization, inverted HOG image with codebook size k;
k ∈ {32, 128, 512, 2048}). There was no time restriction during the test phase and
human observers were allowed to see example images of the categories throughout
the whole experiment. In total, we had 20 participants in our study by the time
this paper was written, and most of them were colleagues from our group. Note
that this can of course not be considered as a representative group of human
subjects and results will be definitely biased. However, the conclusions we can
draw from this limited amount of data are still interesting and a large-scale study
is currently running.

4.3 Evaluation: are we lost in quantization?

The main results of our experiments obtained by humans as well as machine
learning techniques are given in Fig. 5. The plot shows the human scene recog-
nition performance measured in terms of the average recognition rate depending
on the type of quantization (original image, no quantization, quantization with
a specific size of the codebook).

As can be seen, the human recognition performance increases with the num-
ber of codebook elements, which is not a surprising fact. However, it is surprising

2 http://www.inf-cv.uni-jena.de/en/image_representation
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Fig. 5. Human classification result in comparison to machine performance.

that for a codebook size of 32 human performance is significantly worse than
machine learning performance (marked with a green line in the plot). This gap
becomes smaller when we increase the codebook size but it is still existing for
k = 2,048 and even when no quantization is used at all. Only when the original
images are shown to human subjects, the machine learning bag-of-visual words
method is not able to beat human performance. It has to be noted here that the
small gap between human and machine performance in this case is still surpris-
ing given the fact that the machine learning method is not provided with any
spatial information.

4.4 Web interface to the evaluation server

Our current results are based on only a small set of human subjects. However,
we already prepared a large-scale web-based study and a corresponding web
interface3 for our human studies. Some screenshots are displayed in 6. The web
interface can be access under http://hera.inf-cv.uni-jena.de:6780.

5 Conclusions

In this paper, we analyzed the influence of quantization in the bag-of-visual-
words approach on the recognition performance of human observers and com-
pared it to the performance of an automatic visual recognition system. Through-
out our analysis, we tried to establish a fair comparison between human and
machine performance as much as possible by providing each of them with the
same local features. In particular, we inverted quantized local features and pre-
sented them to observers in a human study, where the task was to perform scene
recognition.

3 The authors would like to acknowledge Clemens-Alexander Brust for writing an
excellent flask application for the web interface.
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Fig. 6. Screenshots showing the web experiment. After an introduction (left image),
the user has to classify the presented inverted image into the given 15 scenes (right
image).

Our results showed that (i) humans perform significantly worse than machine
learning approaches when being restricted to the visual information present in
quantized local features rather than having access to the original input images,
and (ii) that early stages of low level local feature extraction seem to be most
crucial with respect to achieving human performance on original images. Finally,
we demonstrated (iii) that large codebook sizes in the order of thousands of
prototypes are essential not only for good machine learning performance, but
more interestingly, also for human image understanding.
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