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Abstract. In this paper, we present a new approach for fine-grained recognition
or subordinate categorization, tasks where an algorithm needs to reliably differ-
entiate between visually similar categories, e.g., different bird species. While pre-
vious approaches aim at learning a single generic representation and models with
increasing complexity, we propose an orthogonal approach that learns patch rep-
resentations specifically tailored to every single test exemplar. Since we query a
constant number of images similar to a given test image, we obtain very com-
pact features and avoid large-scale training with all classes and examples. Our
learned mid-level features are built on shape and color detectors estimated from
discovered patches reflecting small highly discriminative structures in the queried
images. We evaluate our approach for fine-grained recognition on the CUB-2011
birds dataset and show that high recognition rates can be obtained by model com-
bination.

1 Introduction

Nearly all image categorization and object recognition systems are built on the general
idea of using a set of patch detectors and their outputs as proper features for classi-
fication. This is the case for bag-of-features approaches, e.g., [22], where the set of
detectors is usually referred to as codebook or vocabulary of local features, it holds
for recent deep convolutional networks, e.g., [21,31], where detectors are convolutional
filter masks learned on different levels, and it also holds for discriminative patch tech-
niques, e.g., [24,18,8]. In all cases, a single set of these detectors is learned and the
intra-class variability needs to be tackled by choosing a large number of sparsely coded
detectors [22] or by stacking them together into several layers [21].

In contrast, we show how to build patch-based feature representations specifically
for each test example. Our approach allows focusing features and the set of patch de-
tectors on the task of differentiating objects with a similar pose and similar global ap-
pearance. This ability is especially useful for fine-grained recognition tasks, where find-
ing subtle differences is important. Throughout the paper, we use the CUB-2011 birds
dataset [28] as a running example for fine-grained recognition scenarios. Trying to find
suitable patch detectors for the aforementioned differences, within the whole training
set, is a very complex task, which we significantly simplify by restricting the patch
discovery to the K nearest neighbors leading to very compact feature representations.
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Fig. 1: Instead of training a global model, we seek for a given test image (left) its most similar
images among all training samples (middle left). We then learn exemplar-specific representations
by running our patch discovery on the retrieved image set and thereby figure out parts relevant for
differentiation (middle right). Learned detectors are used to encode the images from the retrieved
set and the query alike (right), to train a local model, and to finally classify the query image.

Fig. 1 gives an outline of this idea. In comparison to existing techniques, our approach
offers the following main characteristics:

1. Convolution-based bootstrapping without restricting only to initial patches found
by heuristic segmentation methods as in [18].

2. Exemplar-specific patch representations instead of global models.
3. A combination of exemplar-specific and semantic patches to improve on previous

results on the CUB-2011 birds dataset.

First, we discuss related work in Sect. 2. Our automatic bootstrapping-based patch
discovery is presented in Sect. 3. Steps towards exemplar-specific representations are
given in Sect. 4 and the results of our experiments in the area of fine-grained recognition
are evaluated in Sect. 5.

2 Related Work

There is a large body of literature on the topic of patch discovery, especially when
also discriminative clustering and codebook learning methods are included (see [6] and
references therein). In the following, we restrict ourselves to patch discovery methods
related to our bootstrapping technique. Throughout the paper, we use the term patch
and the notation x to refer to a small region, window, or block in an image, and the
term patch detector and its notation w to refer to a template or linear classifier learned
with a given setM(w) of patches.

Patch Discovery Patch discovery has been an important research field since the early
works of [1] and [27]. Whereas [1] clusters similar patches of training images to obtain
a vocabulary in an unsupervised manner, [27] finds class-specific patches by maximiz-
ing mutual information. Both papers (and related ones during the same time) use simple
detectors based on gray values, which are hardly able to tackle the variability in natu-
ral images. The paper of [24] was the first one to present a patch discovery method
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that made use of recent advances in object localization, such as HOG features and
Exemplar-SVM models. The usefulness of patch discovery schemes for fine-grained
recognition has been demonstrated recently in [23]. The work of [8] shows how to cast
patch discovery as a non-convex optimization problem related to mode seeking. A com-
mon drawback is the time-consuming step of model learning with hard negative min-
ing [24], and [18] presents a time-efficient version using whitened HOG features [15].
Their patch discovery scheme is based on bootstrapping a set of initial seed patches,
which are previously derived from an unsupervised segmentation result. In contrast,
we perform dense bootstrapping with convolutions, which allows for obtaining useful
patch examples after a seeding step considering every possible position in the training
images. Thus, our approach is more similar to latest techniques within the deep learning
field[31,5] where discovery is done in a completely supervised manner and in several
layers simultaneously.

Exemplar and Local Models State-of-the-art categorization techniques are usually
based on huge representations and complex models. Local learning approaches aim at
an orthogonal solution by learning models on the fly specifically tailored to every test
image. Introduced in the early nineties [4], the main focus of those techniques is on a
suitable trade-off between model capacity and number of training examples, especially
for non-uniform distributions of samples in space. Some rare exceptions followed this
idea through the years, e.g., [30] for image categorization, or [16] for recognizing facial
expressions. Similar in spirit are [14,13] showing how to transfer image annotations
from nearest neighbors in the training set, which have been found by a global matching
scheme. Whereas simple, those part detection-by-transferring methods are more flexi-
ble compared to global methods that can only tackle a limited number of viewpoints.
However, current techniques assume a unique and constant feature space, i.e., all ap-
proaches learn local models for fixed representations so far. Similar to our approach,
[12] presented how to learn distance functions for every test sample to overcome this
issue. In this paper, we even go one step further by learning image representations and
classification models for every test sample on the fly, which allows focusing on patches
important to differentiate quite similar birds already observed.

3 Discovering Mid-level Patch Representations

Our patch discovery scheme consists of three main parts: (1) finding initial seed patches,
(2) learning patch detectors, and (3) convolution-based bootstrapping. The discovery is
followed by a feature extraction step, where we generate features by spatially pooling
patch detector outputs.

Finding Initial Seed Patches Finding initial seed patches is an important step to
guide the following bootstrapping steps in the right direction. The purpose is similar
to an interest point detection, which was often used in the earlier works on bag-of-
features (see references cited in [19]). Here, we follow the idea of [18] and extract
quadratic patches xk of different sizes centered on the regions found by the region
segmentation method of [11]. To further focus seed patches towards bird locations, we
mask-out background regions using the pixelwise annotations provided with the dataset,



4 A. Freytag, E. Rodner, T. Darrell, J. Denzler

Fig. 2: Seeding results to initialize patches for discovery: seeding is based on unsupervised region
segmentation [11] conducted with masked images.

but this is only an optional step. The first sets for the patch detectors wk are then set
to M(wk) = {xk}. Fig. 2 shows some example regions extracted in this manner.
Note that we are later on using convolutions to densely bootstrap these initial patches,
therefore, the discovered patches are not restricted to initial seed patches as in [18].

Learning Patch Detectors Humans usually describe a birds appearance by a mix-
ture of typical color and texture occurrences, e.g., a dotted red belly or feathers with
blue stripes. To meet this observation, we represent patches by histogram of oriented
gradient features (HOG) and color feature histograms [25] computed for small cells of
pixels. For a set of patches, we learn a linear patch detector and detection responses for
unseen images are obtained by convolving the weight vector w of the learned model
with computed feature planes of the image. As shown by [15], training HOG detectors
can be done efficiently using standard Gaussian assumptions. Although only presented
for HOG features, their technique can be applied to arbitrary features such as the com-
bined HOG and color features we use in the experiments. Let us consider a single filter
w that represents a classifier differentiating between positive (sub-images showing the
patch) and negative examples. The paper of [15] assumes that positive and negative ex-
amples are Gaussian distributed with the same covariance matrix S0 and mean vector
µ1 and µ0, respectively. It can be shown that in this case, the optimal hyperplane sepa-
rating positives and negatives can be calculated byw = S−10 (µ0 − µ1) [15]. Although
the underlying assumptions leading to this equation might seem unrealistic, the result-
ing simple learning step is, at a closer look, a common feature whitening. It implicitly
decorrelates all features using statistics of a large set of (negative) examples – an im-
portant step to deal with high correlations naturally arising, e.g., between neighboring
HOG cells [15].

Since every detector discriminates a tiny set of positive patches against everything
else, the notion of ’everything else’ can be shared by all detectors. Thus, the covari-
ance matrix as well as the mean µ0 of negative examples can be estimated from an
arbitrary set of background images and features calculated therein. As a consequence,
we can easily pre-compute it and re-use it for every patch model. In summary, the only
remaining steps for learning a new patch detector from given examples is to average the
features of positive patches and to solve a linear equation system.

Iterative Bootstrapping With Convolutions After learning a patch detector for each
of the initial seed patches, we proceed with bootstrapping to obtain new useful training
examples for each of the patch detectors. Bootstrapping can be performed in a super-
vised manner by restricting it to images of the category the initial seed patch was ex-
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Fig. 3: Bootstrapping: initial seed patches are indicated with colored frames and the set of posi-
tive blocks for resulting detectors is displayed accordingly. While the technique is applicable to
supervised and unsupervised scenarios, adding supervision prevents grouping of visually similar
blocks from different categories.

tracted from [24,18,8], or unsupervised by using all training images. Both versions are
evaluated in our experiments.

During bootstrapping, every patch detector is applied to every corresponding im-
age, such that we obtain scores for every possible patch in all images. Note that this is
different from the approach of [18], where only seed patches are considered as poten-
tial candidates for bootstrapping. Our method instead allows for discovering important
patches not found by the unsupervised segmentation in the beginning.

Given the detection responses, we now seek for possible positive patches to increase
the training set size of every detector leading to increased generalization abilities. In
contrast to adding a fixed number m of the highest scored examples in each bootstrap-
ping step, we add at most m examples. In particular, we do not add training examples
that received a detection score worse than a certain percentage γ of the minimum score
achieved by examples already used as positive training examples:

At+1(wk) = {x | (wk)Tx > γ · min
x̃∈Mt(wk)

(wk)T x̃}. (1)

We denoted withAt+1(wk) the set of accepted blocks for detectorwk in bootstrapping
round t + 1. If At+1 is empty, we consider wk as converged. Otherwise, we select m
examples of At+1(wk) with highest score and add them to the set of positive samples:

Mt+1(wk) = topm
(
At+1

(
wk

))
∪ Mt(wk) . (2)

The parameter γ controls the exploration/exploitation trade-off during discovery and
we set γ to 0.75 according to preliminary experiments on smaller datasets. Intuitively,
larger values for γ prevent patch detectors from being “blurred” during bootstrapping
by outliers. Furthermore, this strategy also leads to a convergence during bootstrapping
without the necessity of specifying a fixed number of bootstrapping iterations as done
in [18,24]. Visualizations for the process of bootstrapping are given in Fig. 3 for super-
vised and unsupervised scenarios. Initial seeding blocks for every detector are indicated
with colored frames.
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To finally remove non-discriminative patch detectors, previous approaches intro-
duced supervised feature selection techniques, such as entropy-rank curves used by
[18] or mutual information proposed by [24]. We skip this additional selection step and
rely on the final classification model for the selection of relevant dimensions. Since
bootstrapping is performed independently for each patch, early pruning would also not
lead to an advantage in computation time, but would limit the number of features that
can be used by a classifier later on drastically.

Extracting Features Based on Discovered Patch Detectors After discovering a set
of patch detectors, it now remains to build a final feature representation for an unseen
image. Every detector is trained on just a couple of training patches and fires only on an
extremely small number of windows. Thus, the maximum score achieved for an image
serves as an indicator whether or not the corresponding patch occurs. Consequently,
max-pooling detection responses over the entire image leads to a feature vector with as
many dimensions as detectors discovered previously.

Note that since computing detection results can be interpreted as a convolution of
images and learned weight vectors of detector models, the overall pipeline shows an
interesting parallel to deep learning techniques currently prominent. In direct compar-
ison, we fix the lower layers and instead of learning planes associated with mid-level
features by back-propagation, we instead bootstrap patch detectors, which could be
also used in unsupervised settings. Given the great results recent approaches obtained
by replacing handcrafted representation with rich representations learned in deep ar-
chitectures [31,5], it would be interesting to see the proposed patch discovery scheme
running in a local learning manner on those representations instead of HOG and color
names only, i.e., to fine-tune pre-trained deep architectures for every single test image
and obtaining patches from an additional convolutional layer.

4 Exemplar-specific Mid-level Features

In order to reliably differentiate between subordinate classes, the identification of rel-
evant features is among the most crucial aspects [7,20,10]. Although pose-alignment
techniques [14,13] can almost eliminate effects based on significant pose variations,
e.g., of highly deformable objects like birds, they still have to struggle with the identi-
fication of discriminative features to encode the yet pose-aligned objects. Early papers
in this area used off-the-shelf features such as bag-of-visual-word statistics [20] and
more recent approaches further focused extraction on manually defined regions of in-
terest for training samples [10,14]. Additionally, feature learning techniques have been
proposed to distinguish object classes in an offline training step, by asking users [7],
train 1-vs-1-features [3], or seek for a subset of useful random patches [9]. Still, all of
these methods aim at calculating a unique general representation able to differentiate all
training data as good as possible. Coupled with powerful post-processing techniques,
e.g., linear embeddings in high dimensional spaces [26], state-of-the-art systems usu-
ally work in feature spaces of hundreds of thousands of dimensions, while being trained
on orders of magnitude less training samples (denoted with N ).

We propose to follow an orthogonal path and find for every unseen image a compact,
informative, and image specific feature representation. Thus, we start by querying for a
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new test image its K�N most similar training samples using Euclidean distance and
combined HOG and color name (CN) features [25]. Fig. 1 displays this first step. All
of these images are then used for the patch discovery described in the previous section.
This results in a set of patch detectors that are specific for the current test image and
especially for the global shape and pose of the object in it. The set of patch detectors
is then used to compute feature representations for the test image as well as for the
neighbors. Finally, a linear SVM classifier is trained on the neighbor images and used
to predict the category for the test image. In terms of asymptotic runtimes, our local
learning approach scales with O(K2) during testing for patch discovery, and needs no
training step. In contrast, discovering patch detectors for a global model demands at
least O(N2) and O(N) time during training and testing, respectively.

Combination of Discovered Patches and Semantic Parts As shown in [14], the
performance of fine-grained recognition can be drastically improved when the location
of semantic parts can be estimated, such as the head or back position for bird recog-
nition. Therefore, we combine our approach with the exemplar-specific part prediction
method proposed by [14]. The combination of both exemplar-specific classification ap-
proaches is done by late fusion. In particular, we are combining estimated class proba-
bilities with linear combination S(x) = λ · Ssemantic(x) + (1 − λ)Sdiscovery(x). We
denoted with S class probabilities obtained via late-fusing probabilities Ssemantic com-
puted with a model using semantic part transfer [14] and probability scores Sdiscovery
obtained from a model learned on discovered patches. The combination weight λ ∈
[0, 1] serves as trade-off parameter and can be learned with leave-one-out estimation.
It is important to note that in this paper, we optimize this parameter on the test set to
simply show the potential of a combination.

5 Experiments

We evaluate our approach for fine-grained recognition on the CUB-2011 dataset [28]
and use the provided split for training and testing. Following evaluation standards, we
use the whole dataset CUB-2011-200 with all classes and the CUB-2011-14 dataset
with only 14 classes as done in [10]. In the first part, we are interested in the accuracy us-
ing a global patch discovery with all its different flavors, whereas the exemplar-specific
extension proposed in Sect. 4 is evaluated in the second part. Finally, we show how
combining decisions of models learned on either semantic or discovered parts pays off
and results in improved classification performance compared to state-of-the-art results
on this dataset. For experimental details, we refer to the supplementary material and
our source code, which is available at http://www.inf-cv.uni-jena.de/fine_
grained_recognition .

5.1 Evaluation of Global Patch Discovery

We ran the patch discovery technique described in Sect. 3 with both supervised and un-
supervised bootstrapping (with a maximum of 5 iterations). With the discovered patch

1 Note that in [14], reported results are overall recognition rates averaged over all samples,
whereas we report average recognition rates (averaged over class accuracies).

http://www.inf-cv.uni-jena.de/fine_grained_recognition
http://www.inf-cv.uni-jena.de/fine_grained_recognition
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Table 1: Fine-grained recognition results on the CUB-2011 dataset.
Approach CUB-2011-14 CUB-2011-200

Wah et al. [28] − 10.25%

Our approach (global, unsupervised) 54.01% -
Our approach (global, supervised) 58.01% 39.35%
Our approach (K = 150, supervised) 63.95% 34.16%

Style-awareness [23] - 38.31%
PDL [17] - 38.91%
Template learning [29] - 43.67%
DPD [32] - 50.98%
POOF [3] 70.10% 56.78%

Goering et al. [14]1 73.39% 57.99%

Our approach (K = 150) + [14] 76.64% 58.55%
Our approach (global) + [14] 78.25% 60.81%

Table 2: Results on the CUB-2011-14 dataset without exemplar-specific discovery.
Approach CUB-2011-14

Bootstrapping: on seeding blocks only [18] 46.93%
none 55.64%

Selection: entropy-rank criterion with merging [18] 26.96%
representative, without singletons [24] 58.62%

Our approach (globally discovered parts, convolution-based, no selection) 58.01%

Seeding: human annotated semantic parts 57.89%

detectors at hand, we encode training images as described previously. Classification
accuracies are given in the first rows of Table 1.

First of all, we observe that the supervised bootstrapping clearly outperforms its un-
supervised counterpart. Obviously, supervision during bootstrapping avoids rather sim-
ilar patches with high discrimination abilities being grouped together as can be seen in
Fig. 3. Although similar, tiny details still make some patches different from others, e.g.,
the size of the red dot in the left group of patches. Based on these observations and the
fact that unsupervised bootstrapping requires increased computation times compared
to the supervised variant, we use supervised bootstrapping in all following evaluations
only. Obtained accuracies are in the range of current results from patch discovery tech-
niques such as [23], although not as competitive as latest techniques using ground truth
part annotations and additional expert knowledge [3,14].

In Table 2, we analyzed different steps of our approach and compared to alternatives
proposed in [18]. It can be seen that our convolution-based bootstrapping outperforms
the bootstrapping by [18] which is conducted on seeding blocks only as well as a simple
baseline that uses every seeding block as a patch detector without any bootstrapping
involved. Furthermore, we can also see that the selection criteria proposed by [18,24]
hurt the performance in our case. Interestingly, our part discovery scheme reaches a
performance on par with a baseline that uses manually selected semantic parts. We
further displayed detection response maps in Fig. 4 obtained by applying our discovered
patch detectors on unseen test images.
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Fig. 4: Detection responses of discovered patch detectors on previously unseen test images. High
scores are indicated by warm colors. The very right column displays cases where detectors are
distracted by background patterns. Best viewed in color.

5.2 Evaluation of Exemplar-specific Representations

Choosing the Number of Neighbors Our fine-grained recognition approach using
exemplar-specific patch representations and classifiers is limited by the neighbors found
by global matching. When an example of the correct category is not present in the
set of neighbors, we are logically not able to predict this category for the current test
image. Therefore, we first analyze the quality of the matching scheme and results are
given in Fig. 5. We plot the performance of an oracle method, which reflects a perfect
classification when at least one example of the correct category is among the neighbors,
and the performance of a plain majority vote classification. As can be seen, a small
set of neighbors is sufficient for the CUB-2011-14 dataset to provide training examples
of the correct class, which is not the case for the larger dataset CUB-2011-200. The
majority vote classification is unlikely to already provide proper classification results
due to the simple features used for global matching. However, it took us by surprise
that this simple kNN-technique already improved over the first baseline ever given for
this dataset [28] by more then 4 percent accuracy (first row in Table 1).

Evaluation on CUB-2011 Since the matching accuracy is sufficient to reduce the
training images to a reasonable subset, we are now interested in the performance of
the whole local learning pipeline. The results for the 14 and 200 class sets are given in
Fig. 5a and Fig. 5b, respectively. Interestingly, the local learning approach with k ≥ 80
neighbors outperforms the global learning approach on the small dataset. This is indeed
remarkable, since only a fraction of dimensions is used (an overview of numbers of dis-
covered patch detectors is given in the supplementary material). For the large dataset,
however, matching seems to be the limiting factor, which can be already guessed from
Fig. 5b. Consequently, non-euclidean distance matching [30] or techniques borrowed
from image retrieval [2] would probably overcome current limitations here. Nonethe-
less, local learning results in quite impressive results given the fact that the dimension-
ality is about 2.0% compared to a global model. Thus, we conclude that the discovered
patch detectors form a compact and informative representation.

Combining Patch Discovery and Part Transfer In a final experiment, we com-
bined our approach with the semantic part transfer of [14] and the results are given in
the lower part of Table 1. Although our combination technique is a simple weighted
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Fig. 5: Accuracy of simple k-NN matching on CUB2011 for a perfect oracle, majority
voting, and our approach for different sizes of the query set.

combination of class probabilities, it can be seen that we are able to obtain state-of-
the-art performance among approaches with fixed feature representations for both the
global and the exemplar-specific model, and thus can draw advantage from two comple-
mentary encryption techniques. Interestingly, our local variant is inferior to its global
counterpart when being combined with the semantic part transfer. Our intuition is that
this is mainly due to the way of transferring part annotations in [14] which also re-
lies on a nearest neighbor search as done in local learning. Furthermore, it should be
noted that the results of approaches that learn the underlying feature representations
in a supervised manner with convolutional neural networks [31,5] recently obtained
higher recognition rates on this dataset. Using these representations together with our
discovery scheme is future work.

6 Conclusions

In this paper, we tackled the challenging problem of fine-grained recognition of bird
species. Our approach consists of two key ingredients: a novel patch discovery tech-
nique and a new variant of local representation learning. For the introduced discovery
scheme, we proposed an iterative bootstrapping technique to group re-occurring and
informative subimages to patch detectors. In contrast to other papers in this area, our
method performs dense bootstrapping without restricting itself to segmentation results
and it is suitable both for unsupervised and supervised settings. To overcome compu-
tational burdens during learning and to further focus on relevant patches, our second
contribution is a novel local representation learning formulation. Thereby, for every test
image we learn classification models and image representations jointly by using a subset
of training data most similar to the test image. Results on fine-grained recognition tasks
have shown that the combination of discovered part and semantic part representations
leads to a further boost in performance.
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