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Abstract

In this paper we tackle the problem of classifying ob-
jects, which are not known to the system but similar to some
of the objects contained in the training set. This type of
classification is referred to as generic object modeling and
recognition and is necessary for applications were it is im-
possible to model all occurring objects. As no class for un-
known objects exist, they are either rejected or assigned to
the most similar class contained in the training set. Even in
the case of soft assignments this can lead to wrong interpre-
tation of the actual class membership.

We present a new approach for generating appearance
based hierarchical object models based on probabilistic
PCA for generic object recognition. During the training
step a hierarchical set of mixtures of probabilistic PCA
models is generated. This represents a coarse–to–fine gra-
dation with respect to the reconstruction ability of the train-
ing views at each hierarchy level. So coarse parts of the
training views are covered on higher levels whereas the
lower levels cover more details of the encoded training
views. The mixture components are calculated at each hi-
erarchy in an unsupervised manner using the expectation–
maximization algorithm.

1 Introduction

The main task of object recognition systems is the dis-
tinct classification of objects into trained classes, taking
into account varying illumination, different object poses
and partial occlusion. Under these conditions the way of
constructing the object models is crucial. Moreover many
application domains exist where it is impossible to model all
possibly occurring objects. This includes, e.g., autonomous
service robot scenarios, in which it is not possible to present
all objects within the operational area in the training step.
The actual success of commands like ”Bring me the cup
of water!” does not depend on recognizing a distinct, pre-
viously trained cup, but any cup is sufficient for a correct
execution.

Generic object models allow for classifying unknown
objects into categories which describe subsets of the train-
ing data with respect to common features. Organizing these
categories in a hierarchical manner defines a coarse–to–fine
model hierarchy where higher levels describe generic super
classes and the lowest level distinct objects.
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In order to achieve such an object recognition system,
certain requirements have to be fulfilled.

An object model type has to be defined which allows for
hierarchic partitioning of the training set and, in addition to
the quality criteria for class assignments, a criteria must be
available to distinguish unknown from known objects.

Former approaches [7, 5] have used geometric primitives
as features for building the models, confining themselves
to handle only objects describable by a small set of geo-
metric elements. Our approach combines the advantages
of generic and appearance based object modeling together
with a Bayesian classification due to the underlying proba-
bilistic model. In this paper the work from [3] is extended
with the focus on generic classification.

2 Theory

In contrast to former approaches based on geometric
primitives as features for generating generic object models
[7, 5] we focus on a categorization scheme which is based
on the appearance and not on the semantic of the objects
using probabilistic PCA (PPCA) models [10].

The PCA or Karhunen–Loéve–Transformation is the
starting point for our considerations which is already widely
used in the object and face recognition community [6, 2,
11]. The idea of using view based generic models using
PCA features is based on the property of the PCA to define
an order on the information content that each basis vector
of the transformation carries.

The disadvantages of the PCA are its global linearity as-
sumption and a missing underlying statistical model that
would allow for soft decisions about the membership of a
certain object using probabilities. Using mixtures of PCA
models would involve some kind of vector quantization in
advance to get clusters for calculating local PCA features.
As the clustering is done independently from the PCA, the
resulting representation with respect to the reconstruction
error is not optimal. With the application of mixtures of
factor analyzers, a combined optimization of clusters and
local PCA like dimensionality reduction is available [1].

In [4] it has been shown, how mixtures of factor an-
alyzers (FA) can be calculated within an expectation–
maximization framework and [10] explains the relationship
between standard PCA and FA. This information is used to
build “mixtures of probabilistic PCA models” (MPPCA),
which are derived from FA.



2.1 Factor Analysis and PPCA

Factor analysis is based on a generative model, where an
observation, e.g. an image vector, t i ∈ IRd is generated by
a q–dimensional random vector x i, build from the so called
factors, according to the mapping

t i = Wx i + µ + ε . (1)

Here µ is a constant displacement vector, ε is a noise
vector and W the so called factor loading matrix. The as-
sumption is that x i ∼ N (0 , I q) as well as ε ∼ N (0 ,Ψ)
are zero mean Gaussian distributed random vectors (with I q

being a q × q–dimensional identity matrix and Ψ a d × d–
dimensional diagonal covariance matrix). Consequently the
observation t i is also Gaussian distributed.

Given a set of n observations t i the unknown parameters
of the factor model W , µ, and Ψ can be estimated using
the EM algorithm. Details of the EM–computation can be
found in [4].

The model from (1) can be easily extended to a mixture
model of m Gaussian distributions. The observation vectors
t i are now modeled by

t i =

m
∑

k=1

ωk(W kx i + µk + εk) (2)

with x i ∼ N (0, I q) and εk ∼ N (0,Ψk). The quantity
ωk is the weight of the kth mixture component, Ψ k again a
diagonal covariance matrix of the observation noise. Again
the reader is referred to [4] for a further discussion of how
to extent the EM–algorithm for estimating the unknown pa-
rameters ωk, W k, µk, and Ψk.

For approximating the PCA the diagonal covariance ma-
trix Ψ is restricted to have identical elements (Ψ = σ2

I d)
[10]. Moreover in the case of mixture analyzers all Ψ k are
restricted to have identical σ’s. This restriction is based on
the interpretation of the elements of Ψk as the sensor noise
model. In the case of images as observations the elements
of Ψk represent the noise model of each individual CCD–
sensor element. Allowing only one σ, we assume the noise
model of each sensor element to be the same and indepen-
dent of the sensor reading value.

2.2 Training and classification

Figure 1 depicts the training algorithm. The hierarchical
model generation takes three steps for each hierarchy level.
At the beginning all input images of all objects are used to
generate a low dimensional eigenspace [6] and the accord-
ing eigenspace features for all input images. This is done
to reduce the input dimension for the factor analysis to be
numerically feasible, e.g. from 16384 for 128 × 128 pixel
images to a maximum of 100 dimensions. Then the MP-
PCA model is generated based on the eigenspace features
of the training images. Therefore the log–likelihood of the
model

L =
n

∑

i=1

ln p(t i) with (3)

p(t i) =

m
∑

k=1

ωkp(t i|k) ,

with n observations and m Gaussian distributions, is
maximized via the EM algorithm.

PCA (reduction of input dimension)
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Figure 1: Iterative model generation at the training step.

As a third step the input images are assigned to one of the
mixture components utilizing a Bayes classifier with the a
posteriori probability

p(k|t i) =
ωkp(t i|k)

p(t i)
with (4)

p(t i|k) = (2π)−d/2|C
−1/2

k |

exp

(

−
1

2
(t i − µk)T

C
−1

k (t i − µk)

)

(5)

and

C k = W kW
T
k + σ2

I d (6)

of the submodel k given the observation t i.
All input images assigned to one mixture component

serve as a new category for the next iteration where the al-
gorithm is repeated with the images from each category.

Classification is done similar to the training. At each hi-
erarchy level, starting from the highest one, the test image is
first projected into the eigenspace calculated from the train-
ing images at this level. According to the ML assignment
to one of the mixture components the model for the next
hierarchy level is selected. At the lowest level a nearest–
neighbor classification is performed within the eigenspace.

The log–likelihood of a test image vector t̂ according to
(3) at each hierarchy level serves as a quality criteria how
well a test view is represented by the model. This is used to
distinguish between views of objects contained in the train-
ing set and views of objects which are not. The behavior
of this quality measure for different known and unknown
views is shown in Section 3.

3 Experiments

All experiments for evaluating the approach were done
using the COIL–20 and COIL–100 databases [9, 8] in order
to have a widely used basis for comparison. For demonstrat-
ing our approach for generic object recognition we present
results on standard, i.e. non–generic, and generic object
recognition based on MPPCA models together with results
from standard PCA, where appropriate, i.e. for the non–
generic part.



feature space hierarchy
dimension level 0 level 1 level 2 std. PCA

3–D 80.6% 87.5% 90.3% 74.4%
5–D 93.9% 94.1% 95.3% 89.4%

10–D 98.1% 97.5% 96.8% 94.4%
15–D 98.7% 98.0% 97.3% 94.9%

Table 1: Recognition rates for COIL–100 database with dis-
junct 50% training and 50% test images with different input
dimensions from PCA.

3.1 MPPCA vs. standard PCA

In order to compare our model with standard eigenspace
approaches we calculated recognition rates using graylevel
images of size 128 × 128 pixels from the COIL–100
database which consists of 72 views for each of the 100 ob-
jects. The object model uses 3 hierarchy levels with 5 mix-
ture components at each level. In order to perform the ac-
tual classification at each hierarchy level the training views
contained in a category are divided according to their class
labels and for each set a standard eigenspace is calculated.
Classification on one level is done by assigning the test view
to one of the categories according to the Bayes scheme (c.f.
(4)) and projecting the test view into each of the associ-
ated eigenspaces. The class label is selected by a nearest-
neighbor classifier.

Table 1 summarizes the achieved recognition rates for
the COIL–100 database. The database was divided into dis-
junct sets of 50% training and 50% test images. For each hi-
erarchy level the recognition rates for the test set of known
objects is given. The last column gives the result on a stan-
dard PCA nearest–neighbor classification for a PCA model
at the given dimension. It can be seen that the MPPCA ap-
proach is superior to the standard PCA approach at each
input dimension, even on the coarsest level 0.

Taking the very low dimension of the input features for
the 3–D case into account, the recognition rate of 90.3% are
a reasonable and promising result for larger databases. An
increase of the featurespace dimension does not necessarily
increase the recogntions rates at finer levels as not enough
training images remain for proper eingenspace calculation.

3.2 Generic Classification

Achieving generic classification results is not as trivial
as for the classification of trained objects. Precise numbers
can not be presented as the categorization is done unsuper-
vised, which does not necessarily lead to sensible results for
a “human classifier”.

As Section 3.1 proved that the categorization and clas-
sification scheme according to the a posteriori probabili-
ties performs very well, this section focus on analyzing the
properties of the log–likelihood (LL) criteria.

For testing the generic recognition capabilities, two ob-
jects of the COIL–20 and four of the COIL–100 training set
have been completely removed, leaving only similar objects
for model generation. The data of all other objects where
divided into disjunct training and test set, both containing
50% of the images for each object (c.f. Figure 2).

The log–likelihood at each hierarchy level should give
information on whether the test image is represented by the
current MPPCA model or whether it is too different from
the stored views to be represented by this model.

For known objects the log–likelihood should stay the
same through all hierarchy levels or even increase. This is

Car 2

Car 1

Pot 1

Unknown Pot Unknown Car

Figure 2: Example of objects which are completely re-
moved from the training set for generic object recognition.
On the left side: examples of all objects of the COIL–20
database with those excluded crossed. On right side: ex-
amples of the objects of COIL–100 database excluded from
the training.
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Log–likelihood (Figure 3) and distance function plot within
eigenspace (Figure 4) for the two cars (C1,C2) and the pot
(P1) which are part of the training set as well as for the
unknown car (UC) and the unknown pot (UP).

due to the fact that the finer models are able to capture the
actual appearance better than the coarser models. Unknown
objects, in contrast, should be recognizable by a decrease of
the log–likelihood at a hierarchy level where the model gets
too specialized.

Figure 3 shows the log–likelihood for the hierarchy level
0 to 2 and for comparison Figure 4 does the same for the
“distance in feature space” function used as quality crite-
ria for a nearest–neighbor classification for standard PCA.
Both diagrams show the averaged curves over all test im-
ages for the two unknown objects “uncovered pot” and
“car3” as well as for the three known objects “half covered
pot” and “car1/2”.

In this case, for 20 classes, the log–likelihood criteria
performs very well for generic classification. The two un-
known objects can be identified by decreasing LL. The LL
for the unknown car remains stable until level 1 and de-
creases at level 3, compared to the LL of the unknown pot,
which decreases monotonically through all levels. This be-
havior reflects the fact, that for the car, two very similar
objects were part of the training set, whereas for the pot,
only one object, which exhibits more differences to the un-
known object as the known cars to the unknown, remains in
the training set.

Experiments with the COIL–100 database and the four
excluded objects (Figure 2) show a similar behavior, but the
results are not as clear as for the smaller data set.

Figure 5 and 6 show the averaged log–likelihood over all
views of the four unknown objects and a subset of the re-
maining 96 known objects. The subset was chosen to con-
tain objects which for humans visually similar to the un-
known objects, e.g. eight cars, four cups, seven cans and
one toy bear.

The basic properties of the COIL–20 results can be veri-
fied but for the unknown objects only the log–likelihood for
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Figure 5: unknown objects
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Averaged Log–likelihood of the four unknown objects (Fig-
ure 5) and for a subset of the remaining 96 known objects
(Figure 6) of the COIL-100 database.

Figure 7: Examples of training views contributing the mod-
els at level 2 where most of the unknown cup views (left)
and the unknown car views (right) were assgined to.

“cup 4” shows a proper behavior.
Due to the larger number of objects more hierarchy lev-

els and/or mixture components at each level are required to
achieve class specific information on the finest level. This
leads to problems while calculating eigenspaces and MP-
PCAs because of the lack of training data. For 20 objects
we achieve good separation results on level 2 with a suf-
ficient number of images for estimating the distributions.
Having 100 objects leads to categories which consists of
similar views of a larger number of object classes. The con-
sequence is, that unknown objects at this level have high
LL’s and require further hierarchy levels to separate the ob-
jects. Having approximately 50% of all images (=3600) as
training data results in an average of 28 images per model at
level 2 (3600 images divided by 5 × 5 × 5 = 125 models).
Further splitting is therefore not always possible.

Figure 3.2 and 3.2 show example views of object from
two models at level 2 where most of the unknown cups and
cars were assigned to. Whereas the model for the cup con-
tains only two very similar classes the model for the car
consists of 23 classes altogether (not all shown).

The models, where the other unknown objects are as-
signed to, show a similar distribution of object classes. This
indicates that for the cup the lowest hierarchy level has been
reached but further levels should be calculated in the case of
the other models. For example examining two more levels
derived from the car model from Figure 3.2, most of the
car views are separated at level 4 (Figure 8). The left side
of the figure contains nearly all training views contained in
that model, showing that only cars are included, but still
five different types. The unknown car of a view similar to
these get therefore good log–likelihood values. More im-

Figure 8: Example views of objects from models containing
most of the cars at level 3 (left) and 4 (right).

ages of each car type would be necessary to generate more
specialized models, further extending the hierarchy.

A solution to this in the absence of a proper number of
training images is to generate new views either by interpo-
lating within the eigenspace, as used in [6] for building sub-
space models, by small affine transformations of the origi-
nal images and by adding additional noise.

4 Conclusion

To summarize the results, we have shown, that our pro-
posed hierarchical object model based on mixtures of prob-
abilistic PCA’s suits the need for generic object recognition.
It can be seen that for standard object recognition problems
the new models give reasonable results and that addition-
ally a quality criteria is defined which can be exploited for
generic object recognition.

Further work is done especially on evaluating the mod-
els using other databases, i.e. analyzing the behavior of the
log-likelihood for a larger number of object classes and im-
proving the hierarchy level generation with respect to solv-
ing the mentioned problems.
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