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Abstract. Dueto shorter life cyclesand more complex production processes the automati c generation of modelsfor
control purposesis of great importance. Even though Bayesian networks have proven their usefulness in machine
|earning and pattern recognition and the close rel ationship between Dynamic Bayesian networksand Ka man Filters
respectively difference equations they have not been applied to problems in the area of automatic control. In our
work we deduce the structure of a Dynamic Bayesian networks using the state space description and difference
equations. Both models are trained by the EM agorithm and used for control purposes. The experiments show
that both models performs well, but the training process of the model based on difference equations is much more

stable.
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1 Introduction

Thelife cycle of new productsis shortening more and more
as time to market is a very important point. To guarantee
an optimal quality despite complex products and shorter
life cycles quality management and intelligent controller,
e. g. based on process-models, gain more interest. In most
cases the manual development of models is too time con-
suming, thus model swhich can be trained by avail able data
are necessary.

Requirementsfor thosetraining algorithmsare the abil-
ity to cope with missing or unobserved data, and with dis-
crete and continuous values at the sametime. Aswe aim at
the development of a controller the calculation of suitable
inputs using a desired output is aso one of our require-
ments.

Even though statistical modeling and particularly Bay-
esian networks (BN) have ideal prerequisites for modeling
purposes being proven in other domains, e.g. data mining
and medicine, there are only afew applicationsin the engi-
neering domain. Due to the close relationship between the
description of dynamic systems, e.g. by differenceequation
and state space description, it isalso possibleto use a-priori
knowledge to simplify the training. In section 3.2 the par-
alels between the state space description and the descrip-
tion by difference equation on the one hand and Dynamic
Bayesian Networks (DBN) on the other hand are exploited
to infer an optimal structure for modeling linear dynamic
systems by DBNs. The resulting networks are trained by
the well-known EM algorithm and step and impulse re-
sponse astraining signals. It is shown that the performance
of the trained models is sufficient to act as controller.
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Theefficiency of the difference equation model aswell
asthe state space model is compared with acontroller whose
parameters are inferred from a mathematical model. The
model based on the difference equation clearly outperforms
the state-space model. The training process is more stable
and can be done with less iterations.

Both the analytical retrieved state-space model and
the trained difference equation model show a good perfor-
mance, the desired value is reached with low overshoot and
the deviation of the actual value from the desired value is
below 1%. Given asuccessful training process the samere-
sults are obtained by the state space model.

Even if we focus in the paper on the modeling of sta-
tionary, linear dynamic systems of second order, the exten-
sion to control nonlinear systems is straight forward using
hybrid BNs, i.e. a BN using both discrete and continuous
nodes. As shown in [3] hybrid BNs are able to model non-
linearities by approximation of afunction by aTaylor series
with multiple support points.

An additional advantage of our approach is the pos-
sibility to learn not only the parameters of a given struc-
ture, but both the structure [4] and probabilities [1] of the
Bayesian network from examples.

This article is structured as follows. In section 2 the
term control system is defined and the analytical descrip-
tions applied in control theory are introduced. Section 3
deals with Bayesian networks and the structure used for the
controller. The usage of BNs to generate control signalsis
explained in section 4. The results obtained with this new
type of controller are presented in section 5. The articlefin-
ishes with a short summary.



2 Dynamic systems and control theory

Humans are regularly encountered with controlling tasks.
Typical examples are driving a car. Here the driver has to
take care of his speed to avoid being stopped by the police.
A lot of controllers are also found in industry. Generally
spoken it is the task of the controller to keep the observed
output value q, e.g. the speed of a car as close as possible
to adesired value w, e.g. the maximal speed allowed. If the
environment is changing, e.g. the speed limit is changed or
the car is slowed down due to a hill, the controller should
change the input so that the difference between the desired
value and the current value is reduced as fast as possible.

Thissection is structured as follows. First the main el-
ements of control loops are introduced. Afterwards a math-
ematical description of the dynamic system is given. The
used description is taken from control theory, to ensure a
broad field of application. Additionally this description is
employed to deduce the structure of a Bayesian network
used for control purposes.

2.1 Performance measures

A typical controller istriggered by the error e, i.e. first the
desired value w is compared with the output ¢ of the sys-
tem. When driving acar, e.g. the desired speed is compared
with the current speed. The difference between desired and
current value e isused asinput for the controller which cal-
culates the input for the actuator. The changed input value
of the dynamic system results in a new output, where the
manipulation reaction describes how the system responds
to new inputs.

Additionally the controller has to deal with influences
from the environment. As we do not need a model for the
system’sreaction to disturbances, it is assumed that the dis-
turbances take effect at the output of the system. Thus the
observed output ¢

q(t) = y(t) + 2(t) )

results from adding the disturbing value z to the undis-
turbed output y of the system. As our experimentsare done
with a single-input, single output system, the output ¢ isa
scalar, in theory usually systemswith vector valued outputs
q are discussed.

The most frequently used controllers use the error as
input. In contrary our Bayesian controller use former in-
and output and the desired valueinstead. Theinternal model
of the controller is able to predict the system’s reaction and
calculate the new input accordingly.

Tojudgethe quality of acontroller ameasureis needed.

In control theory alot of measures are known and the selec-
tion depends on the application. A metric that is frequently
used integrates the squared error
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with e(t) as the difference between the desired value w(t)
andtheactual valueq(t). Theterm e, isthe steady state er-
ror and is necessary to guarantee that the integral remains
limited even if there remains a small error. This measure
has to be adapted as we work in a time discrete environ-
ment. Thereforethe integral is replaced by

tmaz
Qa= Y AT(e;— ex)? (3)
t=0
with ¢, astimeuntil convergencetook place. Please note
that e; denotesthe error in atime-discrete system, whereas
e(t) is used for systems with time as a continuous variable.
For the evaluation of our experiments convergence is as-
sumed when the deviation of the last 25 output signals is
below 0.0001.

To get an impression of the convergenceratio thetime
temas(c) is measured until the relative error is below ¢%.
For example assume that the measured steady state error
is 4.5%, thus te,,q.(3%) = oo, as the remaining error is
greater than 3%. But if fast convergenceis observed ¢ 4.
may be very small.

Additionally the so called steady state error e, i.e.
the remaining error when the output signal is converged, is
used as quality measure.

The next section 2.2 deals with a mathematical de-
scription of the manipulation reaction to deduce the struc-
ture of a suitable model.

2.2 Controlled systems

A dynamic system may be regarded as a black box with
severa input and output signalsw and y respectively, where
the output does not depend solely on the input signal, but
additionally on an internal state «. Linear, time-invariant
systems are regularly described by differential equations
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whereas only systems with m <= n are physical realiz-
able. It is possible to rewrite the differential equation (4) of
order n to n differential equations of first order

dfl—f) = Ax(t) + Bul(t) (5)
y(t) = Ca(t) + Bul(?) (6)

called the state-space description. The transition matrix A
describes the transition from one state « to the next, B the
influence of the input « on the state. The output y depends
on the state, as described by C' and on the input «, depicted
by E. Inthe models used later the state is only regarded at
discrete time steps. Therefore equations (5) and (6) has to
be rewritten to

Tiy1 = ANy + Benug (7
Yy = Czy + Euy (8)



where the different values of A gy and B gy in compari-
sonto A and B results from the adaptation to time discrete
systems. Also the differential equation is rewritten for dis-
cretetime, so that the new output signal

Y= — Z aiYi—i + Z Big—; 9
i=1 i=1

isaweighted sum of former input and output signals. Thus
a dynamic system can not only be described by the more
common state space description [5], but aso by a differ-
ence equation which does not meet the Markov assump-
tion. It will be shown, that this disadvantage is more than
compensated by a higher modeling accuracy, and a more
stable signal generation. This results from the removal of
the unobservable state nodes which leads to a stable train-
ing procedure. The state space description from eguations
(7) and (8) as well as the difference equation (9) leadsto a
special structure of the BN.

3 Bayesian networks

Modeling with BNs is equivalent with learning a proba-
bility distribution p(X1, X, - - -, X,,) which representsthe
datato be modeled, e.g. the input- output behavior of ady-
namic system, as well as possible. Assuming independen-
cies between multiple random variables X ;, thejoint distri-
bution simplifiesto

n

=2

wherethe instantiation z; of arandom variable X; depends
only onits parents Pa(X;). Theinstantiation of Pa(X;) is
denoted by pa(i). Usually BNs are represented as graphs
with the random variables as nodes. A link from X ; to X,
i.e. X; € Pa(X;) meansthat X; has adirect influence on
X;.

There are several types of BNs, which can be distin-
guished by the type of nodes used. We restrict ourselvesto
normally distributed, continuous nodes. The distribution p
for anode X with parentsY is

p(wly) = N(NXO + Wxy, O'X)v (11)

where z and y are the instantiations of X and Y, px,
is the mean when no parent exists or all parent have zero
values. The weight matrix W x is used to characterize the
influence of Y on X. o x denotes the covariance matrix
of the normal distribution. The restriction to normally dis-
tributed nodes enables us to use the inference algorithms
described in [8], avoiding time consuming sampling proce-
dures. Additionally there is no need to bother about con-
vergence problems. Thisisimportant as a controller hasto
react in real-time. One of the most important operations on
BNs is the calculation of margina distributions. Given a

full distribution p(X) with X = {X,---, X,,} an arbi-
trary distribution p(X\C) with C C X can be calculated
by integration over all variablesin C":

p(X\C) = /C p(X)dC. (12)

A more detail ed description of the algorithms used for BNs
aregivenin[8,9] or [6].

3.1 Dynamic Bayesian networks

For many purposes a static description is sufficient, see e.g.
[3]. But there are alot of applications when timeisanim-
portant factor, i.e. the distribution of a variable X (¢) de-
pends not only on other variables, but also on its own value
at aprevioustime step. One example are systems described
by equations (5) and (6). For such cases dynamic Bayesian
networks (DBN) are developed, which are able to monitor
aset of variables at arbitrary, but fixed points of time.

For each modeled point in time a static BN is used.
These time dlices are linked to represent the state of a vari-
able at different pointsin time. In a DBN the random vari-
ables are regarded as normally distributed, i.e. when the
state space description is used the distribution of the next
State

p(xig | ®e,ue) = N(Apnwy + Bpyug,o)  (13)

depends on the input w; and the former state ;. For the
evaluation a DBN can be interpreted as a static BN with
equal parameter for all time dlices respectively between
the time dices. A deeper introduction is found in [7]. Well
known DBNs are Hidden Markov Models and Kaman fil-
ter which are mostly used in control theory for tracking and
prediction of linear dynamic systems.

3.2 Structureof the Bayesian Networ k

This section introduces the structure of the used DBN. The
first network is inferred from the difference equation, the
second from the state-space description. Both are suitable
to model dynamic systems, but as we will see the former
uses less hidden nodes, i.e. nodes to model unobservable
values. This leads to better training results.

Using equation (9) resultsin linksfrom theinput to the
output uy_o — Yy, ur—1 — ¥y and also from former undis-
turbed output to the current output y+—o — ¢, Yyr—1 — Yt
Equation (1) resultsin linksy; — q;, 2; — q; with afixed
weight of one. Additionally it is assumed that the statisti-
cal characterization of the disturbing value does not change
from onetime dlice to the next, thus z getsalow covariance
meatrix, and a link with weight one z; — 2z, is added.
These considerations lead to the structure depicted in fig-
urel.

Asit can be seeninfigure 1 the Markov assumptionis
not used in this model, y; dependse.g. on u;_» and y;_».
To be able to use standard tools we mapped the structure
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Fig. 1. Principal structure of a BN used for control purposes

of figure 1 to aDBN which meetsthe Markov Assumption.
The trick is to use redundant nodes, i.e. two nodes in dif-
ferent time dlices get the same value. This assumption is
guaranteed either by assignment of the same evidence to
two nodes (Assignment of former input to «) or by alink
withweight 1 (y; isrepresented in two different time dlices.
These two nodes are connected by a link with weight one.)
between two nodes. The modeling of

the disturbance variable is not changed. The resulting
model, called Difference equation model, is depicted in fig-
ure 2. The advantage of thismodel isthat there are only two
unobserved nodes. For training purposes z we assume that
there is no disturbance, thus no hidden nodes are |eft. This
results in a stable training process.

This model is compared with the state-space descrip-
tion of equations (7) and (8) where the new state is calcu-
lated using theformer state and the input. That resultsinthe
links z; — x;41 and u; — z41. The output depends on
the state and the input, thusthelinks z; — ¢ and uy — g
are needed. The latter can be omitted if changing the input
leads to no immediate change of the output. The disturb-
ing value is model ed by separate random values with alink
of weight one between z;, and z;,; and z; and ¢;. These
considerations result in the structure of figure 3.

4 Calculation of control signals

In section 3.2 the structure of the BN is inferred from a
mathematical description, weight matrices, covariancesand
means are trained using the EM algorithmswith the excep-
tion of the parameters of node z and the covariance matrix
of u whichis set to agreat value, to ensure that « ischanged
to come to ainstantiation with a high-probability.

The next question to be answered is the sampling rate.
According to control theory the natural angular frequency

of asecond order system Ku(t) = y(t) + T1 % + Tg%
iSwyp = Tiz which is reduced by damping the system. The
minimal sampling rate hasto be twice the frequency of the
system. Of course this provides only a hint because usually
damping and T are unknown. This concludes our discus-
sion about the structure and the parameters of the DBN, we
proceed to the calculation of control signals.

For the generation of the input variable v a DBN with
afixed number of time-slices as depicted in figure 2 respec-
tively infigure 3 is used. To generate the manipulated value
ugy1 thefirst part of the input nodesis used to enter the his-
tory. In figure 2 these are the nodes u;_» up to u,. For our
experiments we used 10 nodes for the representation of the
past and 15 for the future, thus ¢ ... is 25 *. Moreover the
observed output values are stored and entered as evidence
using the nodes ¢;,, the oldest stored output value, till g;.
The undisturbed output and the disturbance variable can-
not be observed, so no evidence is given for the random
variable y and z. Now it is the task of the DBN to calcu-
late asignal that can be used to change the system’s output
to the desired signal and to keep that output constant. To
tell the system to do so the desired value w is also entered
as evidence. This means the desired future values for the
output nodes are treated as they were already observed and
entered as evidence for all the nodes g2 till ¢;,,,.. No ev-
idence is given for ¢;; as this value is determined by an
aready calculated input. To control the plant it is neces-
sary to calculate the value 41 which leads to the desired

! The experiments were done with Matlab, Simulink to
simulate the dynamic systems, and the BN-Toolbox,
an expansion of Matlab which is freely available at
http://www.cs.berkel ey.edu/~murphyk/Bayes/bnt.html
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Fig. 2. Non-Markov-Model with redundant nodes

value w. This can be done by marginalization. The new in-
put is passed to the simulation of the dynamic system and
the resulting output is calculated. Then acomplete cycleis
finished. The used input and the resulting output are added
to the history and the next input is calculated. To ensure
that the calculation of the input signal is not limited to a
certain amount of time the evidence is shifted to the left
after each time step, i.e. the oldest input and output values
aredeleted. Thenthe current signal isentered at time¢. The
future values may remain unchanged if the desired valueis
not changed. Thisworkswell for slow systems, for systems
with the ability to oscillate this would result in oscillating
input signals. Thusit is necessary to damp the input. To do
so a weighted sum of wu; to w4y iS used. For our experi-
ments, described in section 5.2, aweighted sum of 4 nodes
isused.

5 Experiments
51 Test systems

Our experiments were done with three different systems
of second order which are simulated by Simulink. These

Table 1. Description of test systems

Nr| K| T: |T>|Description

0.1|Damped system with gain two which has no
tendency to overshoot

2 12]0.1]0.1|System with D < 1 which means that there is
atendency to overshoot

3 |10/0.05|0.1| System with high gain and a large tendency to|
overshoot

[ERN
N
[EEN

systems are described by differential equations

Kuft) = y(t) + % + 1324

Vat T ae
and their behavior depends mainly on the two parameters
Ty and T5. If thedamping D = 2% is greater than one the
system has no tendency to overshoot which means these
systems are easy to control. Systemswith 0 < D < 1 have
the ability to oscillate and overshooting can be regarded
when the input signal is changed. Our test systems are de-
scribed in table 1.

dy (14)

5.2 Comparison state-space and Non-M arkov model

First experimentswere done with state-space modelswhose
parameterswereretrieved anaytically. Thereason for these
experimentsisto get comparative values. The model calcu-
lationisdescribedin[2]. Themainideaisto get theweights
and means of a Bayesian network by comparison with a
Kaman Filter [5]. This analytical model is compared with
a state-space model [13, 12] whose parameters are trained
by the EM-algorithm [11] and a model based on the dif-
ference equation described in section 2.2. The training of
the state space model was stopped after 20 iterations done
with 40 examples each. During the training of the differ-
ence equation model it is assumed that there is no distur-
bance, thus z = 0 and ¢ = y. Using these assumptions there
are no hidden nodes left. It is therefore possible to reduce
the number of iterationsto five. Due to the reduced number
of iterations the training of the difference equation model
is much faster. All three models are used to control the test
systems described intable 1 in the following scenario. First
w and z was set to zero. After convergence w was set to 10,
to test the reference reaction of the control loop. When the
output settled down to its new value z was set to 1, so that
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Table 2. Used quality measures

Qa(z =4d) Squared error sum as defined in equation
(3). Tests done with a disturbance variable
z =d.

Overshoot The difference between the maximal out-
put value gmaq. and w.

€co The remaining error e = ¢ — w after con-

vergence takes place.

Raise time until the output has changed
from ¢ = 0 to ¢ = w when no disturbance
occurs.

Settling time until the error is smaller than
p% starting with the occurrence of the dis-
turbance input.

temaz (2 = 0, c%)

temae(z = 1,¢%)

the disturbance reaction of the system could be examined
(see figure 4 for the signals of the non-Markov controller).
Thetest criteria, discussed in section 2.1 are summarizedin
table 2. The results, being the mean of 10 experiments, are
givenin table 3. Regarding the reference action for the test
system 2 al three models perform well, with dightly better
performance for the trained state space model. The reason

Table 3. Results

Anal. state space| Tr. state space | Difference eq.
System 1 |2 |3 1 |2 |3 1 |2 |3
Qa(z =0) 8.4 9.62(10.28 |7.53|9.47/11.62(8.51]9.82/9.92
ex(z =0) 0.02[0.01|0 0.01/0.0 |0.26 |0.07/0.04{0.01]
Overshoot 0.02[0.56|0.92 |0.48/0.88/1.73 |0.07/0.451.15
Qa(z=1) 0.15|0.19|0.23 |0.16|0.27|0.43 {0.11/0.16/0.19
eso(z=1) 0 |0 |0.01 |(0.03/0.01|0.35 [0.03/0.05|0.03
temas(z = 0,1%)|0.45(0.45|0.7 |0.68|0.72{2.95 (0.82/0.45|0.77|
temas(z = 0,3%)|0.35/0.4 (0.45 |0.48/0.53/2.67 |0.42/0.4 |0.5]]
temas(z = 1,1%)|0.45/0.55/0.6  |0.53|0.78/3.18 (0.36|0.35|0.6
temas(z = 1,3%)|0.3 [0.35(0.45 [0.33]0.62/2.56 |0.25/0.25|0.26

for thesmaller Q) ; of the state space model are greater input
signals which leads to a greater overshoot. Thisisin com-
pliance with control theory. Regarding dynamic systems
two and three the trained non-Markov-model clearly out-
performs the trained state space model. For dynamic sys-
ter number 2 the state space model fails to converge one
time, the mean is therefore calculated only from 9 cases.
Thetable showsthereforeadlightly distorted view, because
the convergence problems are not visible. The state space
controller of system 3 fails two times to reach the desired
value w within an accuracy of 1%. Thus the mean of the
steady state error is much greater in that case. If only the
successful training cases were regarded the mean of e, =
0.01, the mean of the overshoot is 1.07.

The results for the disturbance reaction are similar.
In that case the relative steady state error for system 3 is
greater than one in three cases.

The result of the comparison of the state space model
with the non-Markov-model is that both models are suit-
able for control purposes, but the training of the non-Mar-
kov-model is much faster and more stable.

6 Summary and futureworks

Starting from an analytical description two different struc-
tures of adynamic Bayesian network are developed. These
networks are used as controller by using the desired value
as evidence and using the marginal distribution of the input
nodes as input signal for the controlled system.

The performance of a Bayesian controller based on
the state space description is compared with the structure
resulting from the difference equation regarding both the
reference and the disturbancereaction of the controlled sys-
tem. It isshown that both systems are suited for control pur-
poses, but better training results are observed for the model
inferred from the difference equation.
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Fig. 4. Signalsfor system 2 controlled by atrained controller

There are several meansto deal with higher order sys-
tems. Single input, single output systems can be modeled
by aserial connection of systemsof second order. The other
possibility isto increase dimension of the state nodes (state
space model) or the number of former nodes used for the
prediction of the next output. Of course this would result
in an increase of time complexity, particularly for the state
space model the training would get more complicated.

For the future there will be several points of interest.
To get a better impression of the practical applicability the
performance of a Bayesian controller has to be compared
with PID controller which are widely used in industry and
it has to be examined how the Bayesian controller can be
optimized with respect to special constraints, e.g. no over-
shoot or limited input. Other important pointsarethe ability
to react in real time and the modeling of non-linearities. An
approach to cope with non-linearities are hybrid Bayesian
networks. This approach leads to additional discrete hidden
nodes which might result in run time problems. A second
approach are particle filters used e.g. under real time con-
ditionsin robotics and for fault detection [10]

Using Bayesian networksfor control purposesisarel-
ative new approach, so there is nearly no literature about
controllersbased on BNs. Welch [14] provesthat BNsmight
beusedinreal timefor control purposes, but heisrestricted
to static BNs and the choice between two possible actions.
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