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Abstract. Bayesian networks for the static as well as for the dynamic case have
gained an enormous interest in the research community of machine learning and
pattern recognition. Although the parallels between dynamic Bayesian networks
and Kalman filters are well-known since many years, Bayesian networks have not
been applied to problems in the area of adaptive control of dynamic systems.

In our work we exploit the well-known similarities between Bayesian networks and
Kalman filters to model and control linear dynamic systems using dynamic Bayesian
networks. The analytical models are compared with models being trained with step
and impulse response. The experiments show that the analytical model as well as
the trained model are suitable for control purposes, which leads to the idea of self
adaptive controllers.
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1 Introduction

Bayesian networks (BN) for the static as well as for the dynamic case have
gained an enormous interest in the research community of artificial intelli-
gence, machine learning and pattern recognition. Recently, BN have been
applied also to static problems in production, since production processes
become more and more complex so that analytical modeling and manual de-
sign are too expensive. One example for the successful application of BN to a
static system in production are the quality evaluation and process parameter
selection in order to reach an acceptable quality level [?].

Although the parallels between BN and Kalman filters are well-known
since many years, BN have not been applied to problems in the area of adap-
tive control of dynamic systems. Adaptive control of dynamic systems is one
major problem in production processes. Compared to classical control meth-
ods BN have the advantage that the model (of the static or dynamic system)
can be trained from examples if the model is not available in analytical form.
During training missing information can be handled which makes BN supe-
rior to other self adaptive systems like artificial neural networks. Finally, BN
can also calculate the most suitable input which leads to a desired output
given the information that is entered as evidence in the BN.

* This work was funded by the ,,Deutsche Forschungsgemeinschaft” (DFG) under
grant number SFB 396, project-part C1
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In this paper it is shown that BN can also act as controller. We exploit the
well-known similarities between BN and Kalman filters to model and control
linear dynamic systems using dynamic Bayesian networks (DBN). We show,
how the model is used to calculate appropriate input signals for the dynamic
system to achieve a required output signal. The desired value is entered as
evidence. Then, marginalization results in the most likely values of the input
nodes.

The performance of the controller is evaluated using the steady state
error, the time until the desired value is reached, the integral of the squared
error and overshoot. This is done for both the reference and the disturbance
reaction of the control loop.

The performance of a controller, inferred from a mathematical model, is
compared with a controller, trained with impulse and step responses. The
training is done by the well-known EM-algorithm and simplified by normal
forms which are used to reduce the number of parameters of the model and
thus time complexity and search space during the training.

Both the analytical and the trained model show a good performance, the
desired value is reached with low overshoot and the deviation of the actual
value from the desired value is below 3% for the trained models.

Even if we focus in the paper on the modeling of stationary, linear dynamic
systems of second order, the extension to control nonlinear systems is straight
forward using hybrid BN; i. e. a BN using both discrete and continuous nodes.
In statistical terms this means that a mixture of Gaussians is used instead of
only one normal distribution [?].

An additional advantage of our approach is the possibility to learn not
only the parameters of a given structure, but both the structure [?] and
probabilities [?] of the Bayesian network from examples.

This article is structured as follows. In Sect. 7?7 the term control system
is defined and the analytical descriptions applied in control theory are in-
troduced. Section 7?7 deals with Bayesian networks and it is shown how the
parameters of the DBN are obtained using the similarities to Kalman filters,
a special type of DBN. The usage of BNs to generate control signals is ex-
plained in Sect. ?7. The results obtained with this new type of controller are
presented in Sect. 7?7. The article finishes with a short summary.

2 Dynamic systems and control theory

2.1 The aim of a controller

Humans are regularly encountered with controlling tasks. Typical examples
are driving a car. Here the driver has to take care of his speed to avoid being
stopped by the police. Additionally the temperature of the heating in the car
has to be controlled. A lot of controllers are also found in industry. Generally
spoken it is the task of the controller to keep a value g, e. g. the speed of a
car as close as possible to a desired value w, e. g. the maximal speed allowed.
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If the environment is changing, e. g. the speed limit is changed or the car is
slowed down due to a hill, the controller should change the input so that the
difference between the desired value and the current value is reduced as fast
as possible.

This section is structured as follows. First the main elements of control
loops are introduced together with a block diagram which shows the con-
troller and the dynamic system to be controlled. Afterwards a mathematical
description of the dynamic system is given. The used description is taken
from control theory, to ensure a broad field of application. Additionally this
description is employed to deduce the structure and parameters of a Bayesian
network used for control purposes. Using normal forms described in section
77 results in a reduction of the number of parameters to be learned.

The main elements of the driver example discussed at the beginning can be
found in Fig. 7?7, where all variables are one dimensional. The desired value w
is compared with the output ¢ of the system, which means the desired speed is
compared with the current speed. The difference between desired and current
value e is used as input for the controller which calculates the input for the
actuator. The changed input value of the dynamic system results in a new
output, where the manipulation reaction describes how the system responds
to new inputs.

Additionally the controller has to deal with influences from the environ-
ment. The reaction of the controlled system to the disturbing value 2z’ is
modeled by the disturbance reaction. As the disturbance value 2’ usually can
not be measured it is easier to deal with the system’s reaction z to the dis-
turbance variable directly. From now on z is added to the output y of the
system

q(t) = y(t) + 2(t) (1)

and thus regarded as disturbance variable instead. As the block diagram

| I Disturbance reaction | -2
w *_e - - - + |
“——~O— Controller —=| Actuator |—~Manipulation fea(ﬁ'on%OT

,,,,,,, Controlled System

q
M easurement

Fig. 1. Block diagram of a controlled system

shows conventional controller uses the error as input. In contrary a model
based controller is able to predict the system’s reaction and calculate the
new input accordingly. It will be shown how a Bayesian model can act as
such a controller for a dynamic process and which steps can be taken to
simplify the training of it.
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To obtain general results a general model widely used in control theory
is applied. The usage of this model will not only provide us with a general
structure, but will also reduce the number of parameters to be estimated
during training.

To judge the quality of a controller a measure is needed. In control theory
a lot of measures are known and the selection depends on the application. A
metric that is frequently used integrates the squared error

Q= /OOO e2(t)dt (2)

with e(t) as the difference between the desired value w(t) and the actual
value ¢(t). This measure has to be adapted in two ways. First we have only
limited time. So the upper limit is changed from infinity to te;,q., where
temas is reached when e(t) is lower than one or three percent of the desired
value. If the remaining steady state error is greater than the regarded error
limit, te;,q, is reached when the output signal is converged. Convergence is
assumed when four positions after decimal point does not change for 20 time
slices. As we work in a time discrete space the error is not defined for all ¢
but only at discrete time steps. Thus the error sum

temaz

Qa= Y AT (1) (3)

t=0

is taken as quality measure with AT as time between two time slices. Addi-
tionally the so called steady state error e,, i. e. the remaining error when the
output signal is converged is used as quality measure.

The next section deals with a mathematical description of the manipu-
lation reaction (cf. Fig. ??). The aim is a comparison with a Kalman filter
and later the identification of a suitable Bayesian network for modeling the
behavior of such a system.

2.2 Controlled systems

A dynamic system may be regarded as a black box with several input and
output signals u and y respectively, where the output does not depend solely
on the input signal, but additionally on an internal state a. Linear, time-
invariant systems are regularly described by differential equations

" diy(t T du(t
YTy, Sl 0

i=0 j=0

whereas only systems with m <= n are physical realizable. It is always possi-
ble to transform a differential equation of n-th order to n coupled differential
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equations of first order

d“;—P — Az(t) + Bu(t) (5)
y(t) = Cz(t) + Eu(t), (6)

called the state-space description. The transition matrix A describes the
transition from one state @ to the next, B the influence of the input u on the
state. The output y depends on the state, as described by C and on the input
u, depicted by E. A second order system may overshoot when the desired
value is increased and need a long time to converge to a new value. In this
article we will show how to calculate an input signal, so that overshooting is
avoided and the output settles quickly to its new value. This method is based
on Kalman filters as described in Sect. 77.

In (??) and (??) A is an n x n matrix, where n is the order of the
differential equation. For single input single output systems, i. e. both y and
u are scalars instead of vectors, B and C are vectors of length n and E is a
scalar. Thus there are n? + 2n + 1 parameters in the state space description.
Comparing the number of parameters in the state space description with the
maximal number of parameters in (?7?) leads to the consideration that there
are many possible state space descriptions for the same differential equation.
Reducing the number of parameters would result in a smaller search space
of possible state space descriptions which means a more robust and effective
learning process. That is exactly what is done by normal forms.

2.3 Normal forms

As mentioned in the last section there is no unique state space description
for a given differential equation. E. g. imagine a dynamic system with gain
K. To model such a system the fortification can either take place between
the input w and the state x or between the state & and the output y.

Control theory distinguishes three different normal forms. As this paper
is no introduction to control theory only the observable canonical form, being
used for the training of the BNs, is discussed.

In the observable canonical form the four matrices get a special form.
First the regarded differential equation is normalized, so that the parameter
an = 1. Then the state space description is changed, so that the matrices A,
B, C and E are equal to

000 ---00 —ag
100 ---00 —ay
010 ---00 —as
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bo
b1
B = : (8)
b1
C=1[000---1] 9)
E=b, (10)

The introduction of normal forms is neither a restriction of the dynamic
system, nor is the input/output-behavior of the system changed. Only the
internal state of the system is concerned. Using the observable canonical
form the number of free parameters is reduced to 2n + 1 which is equal to
the number of the parameter in the differential equation if n = m and a,, is
normalized to 1. Thus no redundancy is left. More details about linear control
theory are found in nearly every introduction, e. g. [?] and [?] are useful for
understanding normal-forms.

3 Bayesian networks

Modeling with Bayesian Networks is equivalent with learning a probability
distribution p(Xi, Xa,---,X,,) which represents the data as well as possi-
ble. Assuming independencies between the variables, the joint distribution
simplifies to

plar, T, -, xn) = pla1) - Hp(mpa(i))- (11)

with pa() being the instantiation of Pa(X;). This means that the distribution
of a node X; depends only on its parents Pa(X;). There are several types
of BNs, which can be distinguished by the type of nodes used. We restrict
ourselves to normally distributed, continuous nodes i. e.

p($|y) = N(“Xo + Wxy, O'X)a (12)

where Y = Pa(X) are the parent nodes of X, px, is the mean when no par-
ent exists or all parent have zero values. The weight matrix W x is used to
characterize the influence of Y on X. o x is the covariance matrix of the nor-
mal distribution. The restriction to normally distributed nodes enables us to
use the inference algorithms described in [?], avoiding time consuming sam-
pling procedures. Additionally there is no need to bother about convergence
problems. This is important as a controller has to react in real-time.

One of the most important operations on BNs is the calculation of mar-
ginal distributions. Given a full distribution p(X) with X = {X;,---, X,,} an
arbitrary distribution p(X\C') with C C X can be calculated by integration
over all variables in C:

p(X\C) = /C p(X)dC. (13)
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A more detailed description of the algorithms used for BNs is given in [?], [?]
or [?].

3.1 Dynamic Bayesian networks

For many purposes a static description is sufficient, see e. g. [?]. But there are
a lot of applications when time is an important factor, i. e. the distribution of
a variable X (t) depends not only on other variables, but also on its own value
at a previous time step, e. g. systems described by (??) and (?7?). For such
cases dynamic Bayesian networks are developed, which are able to monitor
a set of variables at arbitrary, but fixed points of time, i. e. time is no longer
a continuous variable.

For each modeled point in time a static Bayesian network is used. These
time slices are linked to represent the state of a variable at different points in
time. Regarding the state space description of (??) the state x;11 depends
on the input u; and the state x;.

In our application the states are regarded as normally distributed, i. e.

p(@er1 | pa(®ii1)) = p(Tis1 | o, ue) = N(Apnx + Bpyug, o). (14)

For the evaluation a DBN can be interpreted as a static BN with equal
parameter for all time slices respectively between the time slices. A deeper
introduction is found in [?]. Well-known DBNs are Kalman filter which are
mostly used in control theory for tracking and prediction of linear dynamic
systems.

3.2 Kalman filter

Our aim is to develop a controller which uses a DBN as model to generate
the control signals. As a first step the model used for systems described by
(7?) and (??) will be developed. As a result we will get the structure, the
weight matrices and the mean values of a DBN. In Sect. 77 this DBN is used
to calculate the necessary input signals via marginalization.

In control theory Kalman filters are a well-known method for tracking and
prediction of stationary, linear systems as described in Sect. ?7. Furthermore
they are a special case of DBNs, so the results obtained for Kalman filter,
e. g. in [?], may be used without any changes.

DBNs represent a time discrete system whose state transition

Tiy1 = Apnx: + Beyug (15)

is described by the matrix A py. In this equation ¢ is used as index to denote
a time discrete system. To calculate Ay it is useful to regard the state
transition of a homogeneous system, i. e. u(t) =0,

z(t) = x(to)P(t, to) (16)

B(t, 1) — f:A@ (17)
i=0 :
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Assuming t = tg41 and tp = ¢ with a constant time difference AT = tj11—tx
the matrix Agy
ApN = P(tps1,tr) (18)

depends only on the time difference AT and A. Thus Apy is constant for
all k. Taking into account the influence of the input on the state leads to

tht1
BBNut = / @(thrl,T)Bu(T)dT (19)
123
which simplifies to
AlATz
= AT . 20
Z (14 1)! (20)

when only systems with a constant AT = t511 —t, and a constant input u; =
u(7) within one timeslice are considered. To build a DBN, which incorporates
these equations Bpy is used as weight matrix between the input nodes and
the state nodes. The matrix @(AT') describes the transition from one state to
the next and is therefore used as weight matrix for the inter slice connection
between two states in neighboring time slices. This means that the state at
time ¢ + 1 is calculated by

xi1 = [P(AT) Bpy]- {21 : (21)

In a BN the mean p is equal to g = g+ Wy. Thus g has to be set to zero
and W = [®#(AT) Bgn]. The output depends linearly on the state and is
not time dependent, thus the matrix C and E may be used unchanged also
in a time discrete system.

As a further consequence the dimension of the hidden state nodes is equal
to the order of the differential equation describing the system.

3.3 Structure of the Bayesian network

Until now only the control transfer function of the system is modeled, i. e.
the reaction when the manipulated variable u is changed. Experiments not
described in this paper show that a system where only input, output and
state variables are modeled, is sufficient for building a controller as long as
only the manipulation reaction of the system is concerned. If disturbance
variables occurs an additional slice for the disturbance variables has been
used. According to (??) the disturbance value z has to be added to y to
come to the measured output q. The weight of the links is set to one. This
results in Fig. 7?7. The additional node z has two different functions. When a
perfect model is used the only task of z is to model the disturbance variable.
In our test scenario a reference value w = 10 and a disturbance variable of z =
1 is used. In this case the state = must take on a value, so that y = g¢g—2 = 9.
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,,,,,,,,, Distribution pm(u, z,2,q)

; X ; " New manipulated value
i Manipulated variables | | !

t-2 t-1 t t41 [ — tinaa

Fig. 2. Principal structure of a BN used for control purposes

When trained models are used z has the additional function to make up the
differences between the model and the reality.

To simplify the training the observable canonical normal form is used.
When (??) and (?7?) are applied to (?7?) and (??) to calculate an adaptation
to time discrete systems the typical form of the normal form is destroyed. But
control theory shows that also for time discrete systems normal form exists.
For the observable canonical form only the last column has to be adapted,
i.e. only the parameters a; and b; changes. Now each zero can be interpreted
as a missing link, each time a position in A is equal to one a weight can
be clamped. Thus the usage of normal forms has two advantages. First the
number of input nodes connected to the output is reduced which results in
higher speed. Second the weights of all nodes being connected to the output
node is known. Thus it can be clamped and is not changed during training.
Indeed this has been the reason to use the observable canonical form. The
remaining knowledge about normal forms is used to find good initializations
for ABN and BBN~

It remains the question about the weight between z; and z;; ;. Here it is
assumed that environmental changes are relatively slow, so that the statistical
properties of z; are approximately equal to z;41. Thus a weight of one is
taken.

4 Calculation of control signals

In Sect. 7?7 we showed how to set the weight matrices and mean values of
the DBN, the questions about the time-difference AT and the covariance
matrices are still open. We first introduce the structure and the generation
of the input signal before we deal with the remaining parameters. For the
generation of the input variable w a DBN with a fixed number of time-slices
as depicted in Fig. 77 is used.

To generate the manipulated value u;1 the first part of the input nodes is
used to enter the history. In Fig. 7?7 these are the nodes u;_s up to uy, for our
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experiments! we used 10 nodes for the representation of the past. Moreover
the observed output values are stored and entered as evidence using the nodes
q+,, the oldest stored output value, till q;. The state cannot be observed, so
no evidence is given for the random variable . Now it is the task of the DBN
to calculate a signal that changes the system’s output to the desired signal
and to keep that output constant. To tell the system to do so the desired
value w is also entered as evidence. This means the desired future values for
the output nodes are treated as they were already observed and entered as
evidence for all the nodes g;42 till qy,,,,. No evidence is given for g;1+1 as
this value is determined by an already calculated input. To control the plant
it is necessary to calculate the value u;4; which leads to the desired value w.
This is done by marginalization. The new input is passed to the simulation of
the dynamic system and the resulting output is calculated. Then a complete
cycle is finished. The used input and the resulting output are added to the
history and the next input is calculated. To ensure that the calculation of
the input signal is not limited to a certain amount of time the evidence is
shifted to the left after each time step, i. e. the oldest input and output values
are deleted. Then the current signal is entered at time t. The future values
may remain unchanged if the desired value is not changed. This works well
for slow systems, for systems with the ability to oscillate this would result
in oscillating input signals. Thus it is necessary to damp the input. To do
so a weighted sum of u; to wsyy is used. For our experiments, described in
Sect. 77, a weighted sum of 4 nodes are used.

It remains the question which AT is appropriate for the dynamic system.

2
According to control theory a system Ku(t) = q(t)+ 11 ((ii_? + TQQ% of second
order has a natural angular frequency of wy = Tiz The minimal sampling

rate has to be at least twice the frequency to be measured.

Our first experiments are done with very small covariances, because we
used an accurate model based on an analytical description and are not inter-
ested in loosing information due to great covariances. Please note that zero
covariances are not possible, due to matrix inversion during evaluation. As a
consequence we got an accurate model that was unable to calculate appropri-
ate control signals. The reason is that small covariances at the input nodes,
together with zero mean values results in a high probability for an input close
to zero which can not be used for control purposes. Therefore we changed the
covariance of the input node to a maximum to tell the system, that there is
no a-priori information about the correct value of the input signal. The other
covariances remain unchanged to keep the accurate modeling behavior.

! The experiments were done with Matlab, Simulink to simulate the dynamic sys-
tems and the BN-Toolbox, an expansion of Matlab which is freely available at
http://www.cs.berkeley.edu/~murphyk/Bayes/bnt.html
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5 Experiments

Our experiments were done with three different systems of second order which
are simulated by Simulink. These systems are described by differential equa-
tions

dq ,d*q

Ku(t)=q(t)+ Ty o + T 2

and their behavior depends mainly on the two parameters 77 and T5. If the
damping D = QTT; is greater than one the system has no tendency to overshoot
which means these systems are easy to control. Systems with 0 < D < 1 have
the ability to oscillate and overshooting can be regarded when the input signal

is changed. Our test systems are described in Table ??. At the beginning of

(22)

Table 1. Description of test systems

Nr. K Ti T> Description

1 2 1 0.1 Damped system with gain two which has no tendency to overshoot

2 2 0.1 0.1 System with D < 1 which means that there is a tendency to
overshoot

3 10 0.05 0.1 System with high gain and a large tendency to overshoot

each test the desired value is set to 0 and shortly afterwards it is changed to
10. After convergence the disturbance input z is changed to 1. Thus at the
first moment the output changes to a value close to 11. Then the input is
changed, so that the output reaches the desired value once again. The signals
are stored, so that the quality measures can be calculated.

5.1 Experiments with calculated models

First experiments were done with models whose parameters were retrieved
analytically. The reason for these experiments are to show that Bayesian net-
works used in the manner described in Sect. 7?7 can be really used for control
purposes and on the other hand to get comparative values. The used quality
measures are described in Table 7?7, the results of our experiments in Table
?7?7. Experiments with the third system are done twice with different sampling
rates. As expected it can be seen that a higher sampling rate improves the
result. The signals of system two can be seen at Fig. 77. At the beginning a
steep raise of both the input and the output signal can be observed. The out-
put signal reaches its maximum of 10.56 and after 0.5s the error is below the
1% level. At t = 4.1s the disturbance variable is changed to z = 1 and half
a second later the effect of the disturbance disturbance is nearly vanished.

In all four cases the system shows a very good performance, the desired
value is reached fast and with nearly no deviation. Also when the disturbance
value is changed from 0 to 1 the system reacts as intended. The input is
changed so that the desired value is reached once again.
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Table 2. Used quality measures

Quality measure Description

Qa(p%,z=d)  Squared error sum as defined in (??). Calculation stopped when
the deviation between w and g is smaller than p%. Tests done
with a disturbance variable z = d.

Overshoot The difference between the maximal output value ¢maq. and w.

er The remaining error e = g — w after convergence takes place.

temaz(z = 0,p%) Raise time until the output has changed from ¢ = 0 to ¢ = w
when no disturbance occurs.

temaz(z = 1,p%) Settling time until the error is smaller than p% starting with the
occurrence of the disturbance input.

Table 3. Results of experiments with calculated and trained models

Calculated models Trained models
Nr. 1 2 3.1 (AT = 0.05) 3.2 (AT = 0.02) 1 2 3.2 (AT =0.02)
Qa(1%,z=0) 843 9.63 8.08 6.97 8.11/10.66 9.43 8.43/5.35
Qa(3%,z=0) 843 9.62 8.06 6.97 8.06/9.58 9.42 8.40/5.18
er(z =0) -0.01 -0.01 0.00 0.00 0.07 0.01 0.09
Overshoot -0.01 0.56 0.35 0.02 0.62 2.4 1.41
Qi(1%,z=1) 0.15 0.18 0.22 0.12 0.2/0.40 0.28 1.19/1.31
Qa(3%,z=1) 0.14 0.18 0.21 0.11 0.19/0.08 0.27 0.67/1
er(z=1) 0.00 -0.01 -0.01 0.01 0.06 0.02 0.24/0.38
temaz(z =0,1%) 0.5 0.45 0.7 0.26 2.21/31.45 1.16 1.37/8.96
temaz(z =0,3%) 0.4 04 0.45 0.22 0.58/4.1 0.82 0.36/0.45
temax(z = 1,1%) 0.45 0.5 0.55 0.48 0.55/22.55 0.92 8.92/8.93
temaz(z =1,3%) 0.3 0.3 0.4 0.26 0.4/0.2 0.6 3.37/8.93

5.2 Experiments with trained models

The results described in the last section are based on analytically retrieved
Bayesian networks. As our aim is to use Bayesian models as self adaptive
controller we have tested our approach also with trained Bayesian networks.
The training material is generated by simulation of the pulse and step re-
sponse of the dynamic system. Particularly the first one is used in control
theory for system identification in simple cases. In-depth analysis to find out
which training signals would be best are still to be done, first experiences
show that the used signals provide results above the average.

40 different time series are used for training and 20 iterations. In our
experiments 20 iterations are usually sufficient for convergence. The exper-
iments are repeated 10 times, to control the robustness of the results. Best
results are obtained for system 2 (cf. Table ??), an example is shown in
Fig. ?7?. As Table 7?7 shows the desired value is reached with an mean ac-
curacy of 0.01 which means that there is almost no difference between the
calculated and the trained model. To avoid that positive and negative values
are averaged to zero the calculation of the mean of the steady state error is
based on absolute values. In some cases a better result is obtained as in the
mathematical model. The reason might be that the variations in the math-
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by a calculated controller by a trained controller

ematical models are clamped to a fixed value which is sufficient for control
purposes but is not proven to be optimal. When comparing the Quality Qg
of the trained and the calculated model the calculated model is only slightly
better. The main difference is that the trained model generated a higher in-
put signal at the beginning so that the error is reduced faster. This results
in a higher overshoot and a longer settling time. In contrast the calculated
controller tries to reach the desired value without any overshoot.

Also the disturbance reaction is fine for the trained system. A mean devi-
ation of 0.2% of the reached value from the desired value is acceptable, even
if in that case the mathematical model shows its superiority regarding the
accuracy and the speed.

The results for system number 1 are slightly below system 2. The desired
value is reached with a mean deviation of 0.7%, but two times the resulting
steady state error is not below 1%. Thus in two cases the upper time te;,qz
when calculating @4 depends on the time of convergence, not on reaching
the given accuracy. Therefore two different means are calculated. The first
value is the mean of cases with e, < 1%, the second value is the mean of the
remaining systems.

Also the disturbance reaction shows good performance. When the distur-
bance value is changed, the desired value is reached with an error of 0.6%.
Concerning the performance the same observations as for the second system
can be made. The error is reduced faster in the beginning, which results in a
higher overshoot and a longer settling time. When the disturbance reaction
is concerned the trained model behaves well, but the mathematical model is
clearly better.

Experiments with the third system and AT = 0.05s show no accept-
able results. Three trials were made and when testing the reference reaction
the deviation of the desired value is between 0.5% and 2.3%. But when a
disturbing value appears a deviation between 7.1% and 9.5% is observable.
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Comparing this steady state error with the disturbance of 10% of the desired
value clarifies that the disturbance reaction is not acceptable.

Thus the sampling rate was increased from AT = 0.05s to AT = 0.02s. In-
creasing the sampling rate results in a great improvement of the performance.
The deviation of the desired value drops to 0.9% as long as no disturbance
appears. A greater problem is the disturbance reaction which results in a
steady state error of 2.7% which means that the effect of the disturbance is
eliminated only to approximately 80%. Additionally the Bayesian controller
reacts relatively slowly in that case.

The greatest problem is the missing convergence in one case. It is well-
known that the EM-algorithm may converge to a local minimum. To avoid
such cases as much a priori knowledge as possible is used, e. g. the knowledge
about normal forms. To avoid missing convergence in the future two remedies
will be studied. First we consider the usage of models with no hidden nodes.
On the other hand an online training during control can take place to further
reduce the error.

The three examples points out that a Bayesian controller is a perfect mean
for controlling linear system. When based on a mathematical description the
desired value is reached, so that no overshoot can be observed. But also
when working with trained models a high accuracy is shown and it seems
worthwhile to expand the described approach to nonlinear system by the
usage of hybrid Bayesian networks.

To ensure applicability in real world domains there are two important
points to be improved. The first point is real-time. In the simulations de-
scribed here the time for calculating the new input signal and the system’s
response is approximately 1.5s. The first step to be done is to use compiled
programs instead of interpreted ones. Later on approximative algorithms may
be used to further improve the performance.

The second point is to improve robustness. One approach is to change
the used inference algorithm. The usage of the algorithm described in [?] is
intended.

6 Summary

Starting from an analytical description the structure of a dynamic Bayesian
network was developed and an explanation was given how to calculate the
parameters of a Bayesian network. These network are used as controller by
using the desired value as evidence and using the marginal distribution of the
input nodes as input signal for the controlled system.

The performance of a Bayesian controller based on trained and analyt-
ically retrieved models is compared regarding both the reference and the
disturbance reaction of the controlled system. Even if the analytical model
performs better the trained model shows a very good performance, e. g. the
steady state error is below 1% in most of the cases. For the future there will
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be several points of interest. To get a better impression of the practical ap-
plicability the performance of a Bayesian controller has to be compared with
PID controllers which are widely used in industry and it has to be examined
how the Bayesian controller can be optimized with respect to special con-
straints, e. g. no overshoot or limited input. Other important points are the
ability to react in real time and the modeling of non-linearities.

Using Bayesian networks for control purposes is a relative new approach,
so there is nearly no literature about controllers based on BNs. Welch [?]
proves that BNs might be used in real time for control purposes, but he is
restricted to static BNs and the choice between two possible actions.
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