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Abstract In computer vision real-time tracking of moving objects in natural
scenes has become more and more important. In this paper we describe a com-
plete system for data driven tracking of moving objects. We apply the system to
tracking pedestrians in natural scenes. No specialized hardware is used. To achieve
the necessary efficiency several principles of active vision, namely selection in
space, time, and resolution are implemented. For object tracking, a contour based
approach is used which allows contour extraction and tracking within the image
frame rate on general purpose architectures. A pan/tilt camera is steered by a cam-
era control module to pursue the moving object. A dedicated attention module
is responsible for the robustness of the complete system. The experiments over
several hours prove the robustness and accuracy of the whole system. Tracking of
pedestrians in a natural scene has been successful in 79% of the time.

1 Introduction

The development of machines which interact with their environment, has become more
and more importantin the past years. One important aspect of those machines, especially
if they are able to move autonomously, is the capability to detect and to track moving
objects, even if the system is moving itself, too.

There exist some sophisticated systems for tracking moving objects in real-time.
[11] present a stereo camera system, which pursues moving objects in indoor natural
scenes. The approach of [2] realizes a contour tracker, which pursues a moving toy car
in a laboratory environment with cooperative background. Tracking cars on highways
in real-time has been the topic of [10, 9]. An optical flow based realization of real-time
tracking can be found in [3].

All these system have in common, that they use specialized hardware like pipelined
image processors or transputer networks. Only a few systems are known for real—
time tracking on general purpose architectures, for example [1, 6]. In this paper we
describe a complete system for data driven detection and tracking of moving objects
in real-time on a general purpose processor. Principles of active vision are included
in different modules of the system, in order to cope with real-time constraints. No
specialized hardware is used. We demonstrate the quality of the system for tracking
moving pedestrians in outdoor scenes. Due to the nature of outdoor scenes the system
has to cope with changing illuminations, reflections and other moving objects.

The paper is structured as follows. In Sect. 2 we give an overview over the system
and describe the two stages in which the system operates. Sect. 3 describes in more
detail the tracking algorithm. Sect. 4 demonstrates the quality of the system for natural



scenes, even during sunshine, rain and snow fall. The papers concludes in Sect. 5 with
a discussion of the approach and an outlook to future work.

2 System Overview
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Figurel. Overview of the complete system

In Figure 1 an overview of the complete system for data driven tracking is shown.
Two hardware dependent modules can be seen, the frame-grabber and the physically
control of the camera. The other modules, the motion detection module, the object
tracking module, the prediction module, the camera control module, and the attention
module are implemented in C++ and use general purpose processors. In addition, a
2D- and 3D knowledge base is available, where problem dependent knowledge can
be introduced into the system. This kind of knowledge is not used for the application
presented in this paper.

The system runs in two stages: ianitialization stage, where the motion detection
modules detects motion in the scene, anlaaking stage. During the initialization
stage, the camera is static to allow for a simple difference image operation for motion
detection in the scene. For the 128128 low resolution difference image a binary
image is computed. This is smoothed to get a few significant regions in the image,
where changes have occurred. The largest of these regions in size is selected and used
as initialization for the tracking stage.

During the tracking stage all modules work together and communicate with each
other. This is indicated by the connections between the modules. The object tracking



module (a detailed description follows in Sect. 3) tracks the contour of the moving
object, and uses predictions computed by the prediction module. Only a small window
of the camera image containing the moving object is processed. The center of gravity
of the object’s contour is sent to the camera control module to steer the camera. The
motion detection module computes with a low frame rate independently moving objects,
using knowledge about the camera motion [8]. The robustness of the whole system is
realized by the attention module. This module watches over the system to detect errors
during tracking. For this, in certain intervals features are computed for the contour of
the moving object£— andy—moments of the contour). Rapid changes in the moments
give hints for errors in the contour extraction.

As soon as an error is detected, the attention module stops tracking, sends a signal
to the camera control module to stop camera motion, and then switches back to the
initialization stage.

3 Object Tracking

For object tracking we have developed a new algorithm, calttigre rays. This algo-
rithm is motivated by active contours and is based on the principle of contour extraction
and tracking. In contrast to [9], who uses also a radial representation of the contour,
we define an internal energy similar to the approach of active contours, which couples
neighboring contour points.

For active rays, we first have to define a reference paint (z,,,y,)?, which has
to lie inside the image contour. An active ray, (¢, A) is defined on the image plane
(z,y) as a 1D function depending on those gray valfies y) of the image, which are
on a straight line from the image point in direction¢

Qm(¢a >‘) = f(mm + )\Cos((ﬁ)a Ym + )\Sln((b))a 1)

with 0 < X < ng, whereng is given by the diagonal of the image. Now, by assuming,
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Figure2. Representation of a contour point by active rays

that each ray only hits the object contour once, we can identify a point of the contour



by the parametex*(¢) > 0

X" (9) =argmin( |V £ (@ + XCOS@),ym + Asin(4))|’)

2
) ; )

with 0 < ¢ < 2x. If the ray hits the contour many times (for example for concave
contours) we have to introduce a set of valu&$¢). This is not important for the
application described here. The representation by active rays is illustrated in Figure 2.
The step, which lead to (2), is motivated by the assumption, that an edge in 2D can also
be found by a gradient search in the corresponding 1D signal. Of course, edges which
are in the directiorp from the reference point cannot be found on the gay(¢, \).

The experiments will show, that this case is not relevant in practice. Having the optimal
value forA* (¢) the contour point,, (¢) in the image plane can easily be computed by

cm(@) = (zm + A () COL), ym + A*(¢) Sin(9)), 3)

with 0 < ¢ < 27. The most important aspect of this approach, especially for real-time
applications, is the reduction of the contour point search from the 2D image plane to a
1D signal. This reduces the computation time which will be shown in the experimental
part of this paper.

In Figure 3, left the extracted contour of an object and in Figure 3, right the function
A*(¢) are shown. One can observe, that the funcfitfy) is smooth for the angles
which corresponds to the correctly extracted contour &) 3x). Then, an error can be
seen, both in the extracted contour and in the funckiv@p). For¢ € [4/3r,3/2 [
the function is not smooth, because a wrong contour has been extracted. This is no
surprise. Looking at equation (2) one can see, that up to now, the contour points are
calculated without taking into account neighboring contour elements. Thus, we need to
introduce some linkage between neighboring contour points to take into consideration
that normally contours are coherent in space, i.e. that contours are smooth. A usual
approach to connect neighboring contour points together is to introduce an internal
energy similar to the active contour approach.

An internal energy which handles the above mentioned demands is
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This energy also depends only on a 1D function, compared to active contours [7], where
the corresponding energy depends on a 2D one. This energy can be formally derived
from the internal energy definition of active contours. This is beyond the scope of this
paper and is published elsewhere [5]. Now we have an energy, which describes contour
point candidates for each ray and an energy, which connects the rays to get a smooth
contour. Similar to active contours we define a total endfgy

d22>\ 2 2
o / AN+ 6@l dg ) ~ 1% om(#, )|}d¢- ®)

. 0
i (| nto

A

2



X(4) 30

I
0 ™

10

g

j 2

éﬂ'

Figure3. Left: 2D contour extracted by active rays. Right: 1D functdnof the corresponding
2D contour shown on the left.

The contour extraction can then be described as an energy minimization problem. Using
the variational approach the Euler—Lagrange differential equation
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must be solved. Again, this differential equation depends on a 1D function, in contrast
to the same differential equation for active contours.

Some remarks must be done regarding the referencenmiAt already mentioned,
this point must lie inside the object contour, but the position may be arbitrary. For a
prediction step, a unigue position would be of great advantage. Thus, we always choose
the center of gravity of the contour
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for the reference point. If this equation does not hold for an actual reference point and
an extracted contour, we update the reference point using equation (6), and restart the
contour extraction with the updated reference point's position.

But how can we compute the reference point for the first image, if we do not know
the contour of the object? This is no problem, because we apply this algorithm to object
tracking. Assuming a static camera during motion detection, we always have a coarse
idea, where a moving object is located in the image. The approach we have chosen is
a difference image algorithm (see the motion detection module in the previous Sect.),
which computes areas in the image, where changes occur. The center of such an area is
taken a initial reference poimt for the first image.

Up to now we have shortly summarized the theory of active rays for the continuous
case. By applying active rays for contour extraction in images we have to go to the
discrete case. Two approaches for the discretization are possible: fixed sampling rate
A¢ for the anglep or the so called any—time behavior. Due to lack of space the reader
is referred to [4]



4 Experimental Environment and Results

We have chosen an outdoor scene to evaluate the performance of the complete system
as well as the robustness and quality of the tracking algorithm by active rays.

The system runs on a SGI Onyx with two R10000 processors without any specialized
hardware. The camera is a pan/tilt device Canon VCC1 which is connected with the
workstation via RS232. A similar tracking performance can be achieved with a HP
735/99 MHz, but this architectures does not allow for full frame rate image grabbing.

We have manually evaluated 40 minutes of tracking. Every 20th frame has been
written to disk after the experiments, i.e. 3000 images have been evaluated. We judged
visually, whether or not the active ray has correctly extracted the moving object. There
have been 73 automatic initializations in which 34 initializations fail. The reason is,
that the center of gravity of the binary motion region not always lie inside the moving
object. For example, for two objects moving close together, the binary region covers
both object and the center of gravity lies between the objects. This has been expected,
because we apply a very fast and simple algorithm for motion detection.

After correct initialization (39 times), we could correctly track 20 moving persons
for 8680 images as long as they have been visible (average number of images: 434,
i.e. 17 seconds). Caused by an error in the tracking algorithm, in 19 cases the object
was lost after an average number of 265 images, i.e. after 10 seconds which results in
another 5040 correctly tracked images. Most of the errors occur near the end of the
place, because there are a lot of strong background edges (the trees).

After loosing the object, the attention module needs an average number of 91 images
(i.e. 3.6 sec), for detecting the loss of the object; in 26 of the 39 cases the detection time
was below one second. Hence, in 3560 images the system has not tracked a moving
person, although it has been in the tracking stage. Thus, we get a total success rate for
tracking of 79 %.

In Figure 4 some typical result can be seen. In the last row, the moving person moves
outside the field of view which the camera can cover by pan/tilt movements. In Figure 5
some additional results can be seen. In the first row the effect of the data driven tracking
is illustrated. The system tracks the moving contour of the small snow-plow, because
it cannot distinguish between contours of moving pedestrians and some other contours.
For this, knowledge is necessary which can be added into the 2D and 3D knowledge
base (see Sect. 2). Tracking one person out of the crowd also works, if the initialization
is correct ( Figure 5, second row).

5 Conclusion and Future Work

In this paper we have presented a complete system for data driven object tracking.
Several principles of active vision are implemented, which allows — in contrast to [9]
— for real-time tracking without specialized hardware. The important aspect of this
system are the tracking module, which uses a new algorithm for contour extraction and
tracking working within the image frame rate, and the attention module, which watches
over the complete system to detect errors. Thus, a very robust tracking over a long time
can be performed. The system satisfies two key components, stated by [11], namely



Figure4. Results for tracking moving pedestrians

— the continuous operation over time and real-time response to different types of
events and
— an open and expandable design due the object—oriented implementation.

The emphasis on real-time performance on general purpose hardware has led us to
consider simple algorithms, especially for the motion detection and motion tracking
module. However, we argue, that the combination of simple methods and an attention
module, which detects errors, can lead to a robust performance. Our experiments on
natural scenes support this claim.

The system can be applied to gate control problems. The tracking algorithm is robust
against changes in the camera parameters, especially against zooming during tracking.
This means, that during the tracking a synchronous zooming toward the moving object
can be done, for example to extract features of the face to identify the person. This will be
our short time goal. In addition, we are working on integrating task specific knowledge
into the knowledge base of the system, in order to increase the contour extraction and
tracking result. One idea is to limitate the normalized shape of the contour, i.e. the
function A*(¢), to certain values, which corresponds to typical contours of moving
pedestrians.



Figureb. Results for tracking moving pedestrians
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