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Abstract. In the past years active contour models have been applied in the �eld of object tracking.

For object tracking a prediction step is necessary, especially when tracking in natural scenes with an

imhomogeneous background or for fast moving objects. Thus, in our paper we introduce a new energy

term which combines a Kalman{Filter based prediction with an active contour energy description. For

this, a new energy term is proposed which can be applied for all prediction steps for which a con�dence

of the predicted positions is available. We present results which show the improvement due to this

new energy term for tracking a moving object in front of an inhomogeneous background and a partial

occlusion during the tracking.
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1. Introduction

In the �eld of real{time computer vision the so called active contour models (snakes,

ACMs) have proven to be a promising approach to data driven object tracking [6, 7].

There are di�erent approaches for solving the problem of energy minimization [1, 4, 9].

Most of them have been developed for the analysis of static scenes and segmentation

[5]. For the use in image sequences, they have mostly been transferred without any

modi�cation. Thus one gets the best results by assuming a homogeneous background

and a small displacement of the object. Object tracking using snakes fails in most of the

cases, when an heterogeneous background is in the scene, in the case of partial occlusions

of the tracked object, and for weak object contours.

For object tracking in image sequences a so called prediction step is needed. With-

out prediction tracking is only possible for very simple objects, using a homogeneous

background and a small displacement of the object between consecutive images. The

displacement of course depends on the smoothing of the energy, but there is a trade{o�

between smoothing and accurate contour extraction. Small objects are likely to disap-

pear if the smoothing is to large.

For ACM a prediction step can be applied in three di�erent ways. First, the prediction

can be done independent of the energy minimization. In the following we will call this

an explicit prediction which means that in a separate prediction step the position of the

ACM is predicted. Second, the prediction can be included in the energy minimization by

modelling the coherence in time of the snake's new position with the positions observed
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during the past images. This means that positions in the image which are likely for

some snake elements, i.e. which lie on the estimated path of the movement, will get a

lower energy. The term implicit prediction for this prediction method takes into account

that the prediction is implicitly done during the energy minimization. Third, one can

combine the explicit prediction and implicit prediction; in the explicit prediction the

positions of the snake elements are predicted and these predicted positions are weighted

in the energy term.

Up to nowmostly the �rst of the three prediction steps are mentioned in the literature.

For example [2] takes advantage of the normal 
ow near the snake elements to iteratively

predict the movement of the whole contour before before the energy minimization is

done. One example which could be classi�ed as an implicit prediction is the Kalman{

Snake of [10]. But this approach does not model the coherence in time through an extra

energy term for the ACM. The disadvantage of the explicit prediction is that despite

of an accurate prediction, missing energy minima can result in errors during the energy

minimization (see Sect. 4).

In our approach we show that a combination of implicit and explicit prediction results

in an improvement of our real{time tracking system [7]. In the explicit prediction, we

use a Kalman{Filter. The estimated positions in the next image are weighted in the

energy term of the snake by using the error covariance of the estimations which one gets

automatically from the Kalman{Filter approach for each estimation. This can be done

without increasing the computational e�ort.

In the next section the mathematical preliminaries are introduced, both for the ACM

and for the Kalman{Filter approach. In Sect. 3 this results in the de�nition of a new

energy term which directly combines an implicit and explicit prediction. In Sect. 4 we

will present results for this new approach which compare ACMs for object tracking in the

case of no prediction, a pure explicit prediction by a Kalman{Filter and a combination of

Kalman{Filter and a new energy term for ACMs. The paper concludes with a discussion

of the approach.

2. Mathematical Background

2.1. Active Contour Models

In the following we describe extraction of objects contours by ACMs for static images.

Thus we have left out the indices for the time t of the image. An ACM can be described

as a parametric function v(s) = (xs; ys), s = 0; 1; : : : ; n� 1, with xs 2 [0; xmax]; ys 2

[0; ymax]. Such an ACM has an energy E� de�ned by

E� =

n�1X
0

[Ei(v(s)) + Ef (v(s)) + Ec(v(s))] : (1)

In most cases the internal energy Ei is given by

Ei(v(s)) =
1

2

�
�(s)jvs(s)j

2 + �(s)jvss(s)j
2
�
; (2)
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where vs and vss are the �rst and second derivatives of v with respect to s. The

parameters �(s) and �(s) describe the sti�ness and elasticity of the ACM. Ef describes

the forces of the image on the snake and Ec summarizes all the other constraints of the

snake, for example, connections of snake elements to image features (spring forces) or

the limitation of the distance between the snake elements [9].

The position of the ACM in an image is computed by minimizing the energy (1). For

minimization two approaches can be found in the literature. The �rst approach treats the

minimization as a search problem in the 2D image plane [1, 11]. The second approach is

based on the variational calculus [9], by iteratively solving the Euler{Lagrange di�erential

equations. In the discrete case the following equations must be solved [9]:
�(s)(v(s) � v(s � 1)) � �(s+ 1)(v(s + 1)� v(s)) +

�(s � 1)(v(s� 2)� 2v(s � 1) + v(s)) � 2�(s)(v(s � 1)� 2v(s) + v(s+ 1) +

�(s + 1)(v(s) � 2v(s + 1) + v(s + 2) +

�
@(Ef +Ec)

@xs
;
@(Ef + Ec)

@ys

�T

= 0

Let us rewrite this in matrix form for s = 0 : : :n� 1:

Ax+ fx(x;y) = 0 and Ay + fy(x;y) = 0 (3)

with

x = (x0; x1; : : : ; xn�1)
T ;y = (y0; y1; : : : ; yn�1)

T ;

fx(x;y) =

 
@(Ef +Ec)

@xs

����
s=0

;
@(Ef +Ec)

@xs

����
s=1

; : : : ;
@(Ef +Ec)

@xs

����
s=(n�1)

!T

;

and

fy(x;y) =

 
@(Ef +Ec)

@ys

����
s=0

;
@(Ef +Ec)

@ys

����
s=1

; : : : ;
@(Ef +Ec)

@ys

����
s=(n�1)

!T

:

For the computation of the unknown vectors x and y an iterative procedure is used that

converges if x(k) = x
(k�1) and y(k) = y

(k�1), where x(k) and y(k) are the solutions at

iteration step k. Thus, the equations (3) can be written as:

Ax
(k) + fx(x

(k�1);y(k�1)) = 0 = 
(x(k�1) � x(k)) (4)

Ay
(k) + fy(x

(k�1);y(k�1)) = 0 = 
(y(k�1) � y(k)) (5)

with 
 2 IR being the stepsize, and transformed to:

x
(k) = (A+ 
I)

�1
�

x(k�1) � fx(x

(k�1);y(k�1))
�

(6)

y
(k) = (A + 
I )

�1
�

y(k�1) � f

y
(x(k�1);y(k�1))

�
(7)

Introducing a prediction step within this approach means that an additional energy term

must be found which handles the coherence in time of the movement during the tracking.

As one can see in equations (6) and (7) the derivative of the energy must be computed.

Thus it would be advantageous, if one can �nd an energy term for which a closed form

solution for the derivatives with respect to xs and ys exists. Such an energy term will

be developed in Sect. 3.
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2.2. Kalman{Filter

In [10] a Kalman{Snake has been introduced. We describe in the following a more

simple and thus computationally less expensive dynamic system for the motion of the

snake elements in the 2D image plane. The snake elements are uncoupled. For this

reason, only n 3� 3 matrices have to be inverted, instead of one 3n� 3n matrix.

Now for time varying images we have to add the time parameter to the snake model.

Thus, xs;t and ys;t means the position of the s{th snake element in x{ and y{direction

at time t. The dynamic system for the motion without distortion is then formulated by

(see [3])

xs;t+1 = xs;t + h _xs;t +
h2

2
�xs;t; _xs;t+1 = _xs;t + h�xs;t; �xs;t+1 = �xs;t (8)

ys;t+1 = ys;t + h _ys;t +
h2

2
�ys;t; _ys;t+1 = _ys;t + h�ys;t; �ys;t+1 = �ys;t; (9)

with s = 0 : : :n�1, which means that we assume constant acceleration which is distorted

by the model noise m
nt = (0; 0;mn3;t; : : : ; 0; 0;

mn3n+3;t)
T
2 IR6n (see equation (12)),

where the left upper index m denotes that the noise is related to the model. Only the

positions of the snake elements can be observed, thus we get for the observation equations

zs;t = xs;t +
ons;t; zn+s;t = ys;t +

onn+s;t (10)

where o
ns;t = (on0;t;

on1;t; : : : ;
on2n�1;t)

T is the observation noise, where the left upper in-

dex o stands for observation. The complete description of the system can be summarized

as follows:

xt = (x0;t; _x0;t; �x0;t; x1;t; _x1;t; : : : ; �xn�1;t; y0;t; _y0;t; �y0;t; y1;t; : : : ; �yn�1;t)
T (11)

xt+1 = Bxt +
m
nt with E[mnt

m
n
T

t ] =
m
N t (12)

zt = Cxt +
o
nt with E[ont

o
n
T

t
] = o

N t (13)

B =

0
BBB@
Bh : : : : : : 0

0 Bh : : : 0

...
. . .

...

0 : : : : : : Bh

1
CCCA 2 IR3n�3n with Bh =

0
@ 1 h h2=2

0 1 h

0 0 1

1
A (14)

C =

0
BBB@

1 0 0 0 0 0 � � � 0

0 0 0 1 0 0 � � � 0
...

...
...

...
...

...
...

...

0 : : : : : : : : : : : 1 0 0

1
CCCA (15)

In these equations (11) is the state vector, (12) the state transition equation, (13) the

observation equation, and the matrices (14) and (15) the transition and observation

matrix, respectively.
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Without going into detail, the following recursive update equations can be computed

[8], starting with an initial state estimation the error covariance matrix of which is P
(�)
0 :

� error covariance matrix extrapolation P
(�)
t

P
(�)
t

= BP
(+)
t�1B

T + m
N t (16)

� Kalman{Gain matrixKt

Kt = P
(�)
t
C

T

h
CP

(�)
t
C

T + o
N t

i
�1

(17)

� error covariance matrix update P
(+)
t

P
(+)
t = [I �KtC]P

(�)
t (18)

We have left out the complete state estimation equations in this brief overview of the

theory. The important part of this approach for our new energy term is the error

covariance matrix P
(+)
t

(equation (18)) which gives a measure for the con�dence of the

snake elements' estimated positions. This is exactly the measure which is needed in the

energy, as it will be described in the next section.

Instead of equations (11) to (15) any other system description is possible. We have

also tested a model description in which a common displacement in the image plane for

all snake elements have been introduced, to satisfy the constraint that contour elements

of the moving object have a common motion direction. Then the system cannot be

uncoupled and due to the increased computational e�ort our real{time experiments

showed a worse result compared to the model description in equation (8).

3. Introduction of a new Energy Term

In Sect. 1 we have motivated the advantage of a combination of implicit and explicit

prediction. Let us now assume that we get a prediction for the position vp of the ACM

in one image as a result of an explicit prediction step. Again we have left out the

time index t. Such a prediction step is in our case a prediction by the Kalman{Filter

(Sect. 2.2).

The following energy term for an implicit prediction takes into account the results

of the explicit prediction step. To be more precise, we recursively calculate the error

covariance P (+) (compare equation (18)) of the predicted positions. On the one hand, if

the error covariance is small, the prediction is rather accurate; on the other hand, a large

covariance means, that the predicted positions are not very reliable. An energy term

Ep(v
(k);vp), depending on the actual position v(k) at iteration step k and the predicted

position vp is shown in (19). It shows the demanded behavior, i.e. small energy on a

predicted position, if this position is very reliable, and large energy, if the position is
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unreliable,

Ep(v
(k);vp) = �

1

j2�P (+)
j
1=2

exp

�
�

1

2
(v(k) � vp)

T

�
P

(+)
�
�1

(v(k) � vp)

�
(19)

The advantage of this term is that there exists a closed form of rEp which is required

in the Euler{Lagrange di�erential equations (3).

rEp(v
(k);vp) =

@Ep

@v(k)
= �Ep(v

(k);vp)
�
P

(+)
�
�1

(v(k) � vp) (20)

Thus the equations which must be solved (compare equations (4) and (5)), become

Av
(k) + Ep(v

(k);vp)
�
P

(+)
�
�1

(v(k) � vp) +rf(v(k)) = 0 (21)

The principle of this new energy term (19) is clari�ed in Figure 1. Without the new
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Figure 1. Left: external energy of the contour of a circle without prediction. Right: in
uence of the
new energy term. Predicted positions of snake elements are weighted with respect to their

con�dence (point A, strong con�dence; point B, weak con�dence).

energy term, the external energy which mainly determines the object's contour, looks

like Figure 1, left. One can see that the predicted position of the explicit prediction has

no in
uence on the shape of the ACM. If there is a strong background edge near a weak

object's contour, the snake elements will move toward the strong background edge.

In Figure 1, right, the predicted positions are weighted in the external energy by the

con�dence of the prediction which is described by the error covariance matrix P t(+).

The snake{element on the left side (point A) has been strongly weighted due to a small

error covariance, while the prediction of the element on the right side (point B) has

only a small in
uence on the external energy. Thus, this element can move into the

true minimum, while the �rst element will remain on its predicted position, even if the

object's contour is weak or if there is a strong background edge near the object.
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Figure 2. Images 420, 430, 440, 450, 460 of a real{time experiment. First row: without prediction.

Second row: prediction using a 2D motion model and a Kalman{Filter (see Sect. 2.2). Third
row: prediction in combination with the new energy term, described in Sect. 3.

4. Experiments and Results

We have used an experimental setup described earlier in [7]. A toy train is moving

in front of a robot on which a camera is mounted. The movement of the robot is

calculated by matching the center of the snake with the center of the image. We have

chosen a light object in front of an inhomogeneous background (see Figure 2). We

have tested the quality of tracking using snakes for three di�erent approaches: without

prediction (Figure 2, �rst row), with an explicit prediction step, based on the a 2D

motion description in the image plane (Figure 2, second row), and with an combination

of implicit and explicit prediction based on the new energy term in the ACM (Figure 2,

third row).

Using the standard variational approach without any prediction (Figure 2, �rst row)

the strong background edges near the moving object cause an error in the contour ex-

traction. Using the explicit prediction step, described in Sect. 2.2 the tracking can be

improved. But after the partial occlusion of the object, the ACM is caught by the

occluding background object (Figure 2, second row). This behavior can be eliminated

by introducing the new energy term described in Sect. 3. In Figure 2, third row, the

prediction which has a strong con�dence after 40 successfully tracked images, is strongly
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weighted and thus the ACM does not lose the object contour.

5. Conclusion

In this paper we have developed a new approach for combining Kalman{Filter and ACMs

in the context of object tracking. For object tracking with ACMs a prediction step is

essential. Three di�erent methods for including a prediction step have been introduced.

For the special case of a prediction by Kalman{Filter, we have proposed an energy

term which handles the con�dence in the predicted positions within the energy of the

snake. The con�dence which can be described by the error covariance matrix is one

value which is returned by the iterative Kalman{Filter equations. Thus, for any model

of the object's motion which can be described within the Kalman{Filter approach, a

mixture of implicit and explicit prediction can be done using the proposed energy term

in the ACM energy. One advantage of our approach is that a closed form solution of the

derivative of this energy term with respect to the snake elements exists which is needed

in the variational calculus to iteratively solve the Euler{Lagrange di�erential equations.

Another advantage is the small additional computational e�ort compared to other purely

implicit and explicit prediction steps, presented earlier in the literature

Our experiments showed for a 2D movement of the snake elements that the per-

formance in real{time object tracking can be increased, even for partial occlusions and

strong background edges near the object.
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