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Abstract

In this paper we apply a new data driven 3D pre-
diction step for active contour models to car track-
ing on highways. The so called 3D bounding volume
(BV) is a coarse 3D representation of a moving ob-
ject, for which the 2D contour in the image plane
has been extracted and tracked by active contours.
By calculating the BV's shape and location in 3D an
estimation of the object's motion is possible. Thus,
in contrast to pure 2D tracking of the object's con-
tour by active contour models knowledge about 3D
motion is available. This is necessary, if changes in
the object's contour | for example, due to rotation
| needs to be predicted.

We present experiments in the area of car track-
ing, which show that tracking the cars by active
contour models can be improved by the proposed
3D prediction step. In addition, relative statements
about the direction of the motion and the velocity
of the cars are possible.

1 Introduction

In the past years active contour models have been
successfully applied to object tracking. Despite the
fact that for object tracking a prediction step is an
essential part, only few work is known which intro-
duces a 2D prediction step into the framework of
active contours. For example, [2] computes a 2D
prediction based on the normal ow measured at
the snake elements in the image. [12] proposes a
Kalman{snake which is capable for tracking 2D con-
tours.

There is one main reason for the lack of a 3D
prediction: For tracking moving contours, a predic-
tion of an object's contour is only possible if 3D
knowledge about the object itself is available. Due
to the fact that active contour models are applied
to data{driven tracking no model knowledge is nor-
mally available.

In some application a coarse idea about the ob-
jects is available, without having an explicit repre-
sentation. For example, so called generic car mod-
els have been used to track cars in tra�c scenes
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Fig. 1: BV for 2D contour prediction: The mappings
P, H, and C are formally described in Sect. 2.1

[8, 10].the explicit parameters of the car model are
estimated during the tracking itself. Another exam-
ple is the generic model of humans for pedestrian
tracking [11]. This principle is transferred in this
paper to active contour models to introduce a data
driven 3D prediction step. For data driven tracking
where no a{priori models of the object are available
one has to look for a description of the object which
enables to predict the 2D contour of the object by
estimating the 3D position and the coarse shape of
the object itself. The bounding volume of an object,
which is a well known term in computer graphics, is
the smallest volume which completely contains the
object. These bounding volumes can be applied to
2D contour prediction. The idea is the following (see
also Fig. 1): Initially extract the contour of the mov-
ing object by the snake's energy minimization, then
estimate the parameters of the BV (i.e. the location
in 3D and its shape), such that the projected contour
of the BV best matches the extracted active contour.
Finally, use the computed location and shape in 3D
to update 3D knowledge about the motion and the
shape of the object. For the next image the contour
of the BV is projected into the 2D image plane to
initialize the active contour.

In Sect. 2 the approach of 3D bounding volumes
(BV) will be introduced. We also present the mo-



tion model and the estimation algorithm,which have
been applied in the experimental part of this paper
(Sect. 3). There, experiments in the area of car
tracking on highways show that object tracking by
active contours can be improved and even relative
statements about the direction of the motion and the
velocity of the cars are possible. The paper closes
with a discussion of the results and an outlook to
future work (Sect. 4).

2 Theoretical Background

2.1 3D Bounding Volume

Due to lack of space, we only shortly summarize
the idea of the BV. A more detailed description can
be found in [4]. Let M (a) be the set of 3D points of
a BV, parameterized by a vector a:

M (a) =
n
(wxi(a);

wyi(a);
wzi(a))

T
j i = 1; : : : ; n

o

The upper left w denotes that the coordinates wxi,
wyi and

wzi of the point i refer to the 3D world.
These points may be corners, edge points or in gen-
eral surface points of the BV. For example, for a
rectangular solid, shown in Fig. 1, a parameter vec-

tor a might be a = (l; w; h)
T
, with l; w and h be-

ing the length of the edges of the rectangular solid.
In general no restrictions for the object's shape are
made. The rotation R and the translation t map
the points of M (a) to the set R; tM (a), which con-
tains the rotated and translated 3D points of the
BV. Now, a visibility test must be performed. In the
literature of computer graphics several algorithms
can be found (z{bu�er, scan{line, raytracing [6]).
We de�ne a hiding operator H, which maps the set
R; tM (a) of 3D points into the set R; tM 0(a) of visi-

ble 3D points. Now, the set R; tM 0(a) � IR3 will be
projected onto the image plane by perspective pro-
jection P . The result is the set R; tM 0

P
(a) which is

equal to the 2D image of the BV's points. Finally,
an operator C will compute the visible 2D contour
of the BV, which leads to a set of points R; tCP(a)

in IR2. These points need to be transformed to a
sequence of points hcii1�i�m, with ci 2

R; tCP(a),
ordered counterclockwise to form a representation of
this contour.

In Fig.1 all steps of this approach are summa-
rized. The mappings H and C are time critical for
real{time experiments. By taking as BV the spe-
cial class of convex polyhedra these both mappings
can be done by projecting the corners of the convex
polyhedra into the image plane and calculating the
convex hull of these points. This computation is ob-
viously less time consuming and can be applied to
real{time problems.

For two contours hcii1�i�m and hc0
j
i1�j�n a dis-

tance function dist(hcii1�i�m; hc
0
j
i1�j�n), for exam-

ple

dist(hcii1�i�m; hc
0
j
i1�j�n) =

type of vehicle length width hight
car 4.0 2.0 1.5
van 5.0 2.5 2.5
truck 12.0 3.0 3.0

Tab. 1: Parameters of the BV for di�erent cars.
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is de�ned. This function measures the correspon-
dence of two 2D contours. Now, for a given active
contour hc0

j
i1�j�n and a parameter description of a

BV, the parameters R; t and a can be computed by

(R; t;a)
T
= argmin

R; t;a

dist(hcii1�i�m; hc
0
j
i1�j�n) (2)

where ci 2
R; tCP(a). The minimization in (2) re-

sults in the parameters R; t and a of that BV, the
contour of which best matches | in the sense of
equation (1) | the active contour. Of course, am-
biguities especially for the parameter R may occur
(the Necker illusion); in that case, local minimamay
be reached. The experiments will show, that theses
local minima are no problems for the prediction of
the contour. To calculate the parameters R; t and a
we use stochastic optimization techniques described
in [5].

After this step we have a 3D estimate of the mov-
ing object's BV. The only knowledge which is needed
for this step is a parametric representation of the
BV, which has to be chosen in advance. In our ex-
periments (see Sect. 3) we have taken a rectangular
solid.

2.2 Motion Model and Prediction

With the algorithm presented in the previous sec-
tion we can calculate for each 2D active contour the
shape and location of a BV, which 2D contour best
matches the active contour. Now, in the case of
image sequence processing we get for each image
f(x; y; t) the parameters R(t); t(t) and a(t). Thus,
an estimation of the shape parameters and the mo-
tion of the BV in 3D is possible. Usual approaches
can be found in estimation theory [1].

Despite the fact, that the parameter vector a of
the BV can also be estimated as described in the pre-
vious section, we use for the experiments only three
di�erent parameter vectors a. This reduces the com-
plexity of the search space. The parameter vectors
correspond to three di�erent types of vehicles (car,
van, and truck) and have been determined heuristi-
cally and �xed in advance. The relative parameter
values can be found in Tab. 1. It is worth noting,
that these values are only coarse estimations.

For the motion model we apply the discrete{time
model of a constant{velocity target [1]. The state
of the target (position, velocity) is estimated by a
Kalman{Filter.



Fig. 2: Results for tracking cars on a highway: the
�rst and the last image of a sequence of 124 images
are shown. First row: the extracted active contours.
Second row: the estimated BV.

3 Experiments and Results

3.1 Experimental Environment

We have tested our proposed method on highway
image sequences (one example is shown in Fig. 2).
This data set contains 10 sequences, each with a
length of approximately 100 - 200 images. For the
�rst image, each active contour is initialized inter-
actively on the corresponding moving vehicle. This
is due to the fact that we have no knowledge about
the movement of the camera and are thus not able to
estimate independent motion in the image. An au-
tomatic initialization in the case of known camera
motion has already been proposed in [9].

Then, tracking is done with active contours with-
out any prediction step. We use an active contour
model, which is based on the original approach of
[7] and which has been modi�ed to ful�ll real{time
constraints [3].

The image sequences, which have been used in
this paper, are very di�cult to process with active
contour models. The reason for this is that there
are background edges near the object (other vehi-
cles), weak object contours (very low contrast), and
large displacement of the vehicle in the image plane
(especially for vehicles approaching the observer).
Thus, normally the active contour looses the mov-
ing vehicle after some images.

Once the active contour has lost the object, the
second experiment starts. As long as the estima-
tion error of the Kalman{Filter is above a certain
threshold, tracking is done without the prediction,
i.e. initialization of the active contour. After the
Kalman{Filter error is below the threshold, the pre-
diction step by the BV is activated, for which the
location in 3D has been already estimated and up-
dated during the previous images. Then, for each
new image the 3D location of the BV is predicted
and its 2D contour is projected into the image plane.
This 2D contour is used to initialize the active con-
tour, which extracts the object contour by the nor-
mal energy minimization.

3.2 Results

Fig. 3: Tracking a car approaching the observer by
the BV. Even the pose estimation is correct.

Fig. 4: Tracking a truck approaching the observer.

In our experiments a total number of 13 vehi-
cles have been tracked. The average number of im-
ages, in which a vehicle has been visible, is 98 im-
ages. Without any prediction only one sequence has
been completely tracked without an error. With the
proposed 3D prediction step, we were able to cor-
rectly track the vehicle over the whole sequence in
6 of the 13 sequences. The average number of im-
ages, in which a vehicle could be tracked, was 28
images without prediction and 46 images with the
prediction step. For one sequence neither with nor
without prediction step the vehicle could be tracked.
The reason is, that there is a very low contrast in
the image and the distance to the vehicle is large,
which results in a very small object contour. It is
well known that for such kind of image data active
contour models are not suited.

In the following we will illustrate the advantages
of the algorithm. As one can see in Fig. 2, the BV
does not correctly model the real 3D position of the
vehicles. Nevertheless, the computed 2D contour of
the BV, which is taken as initialization of the active
contour for each new image, is precise enough to
track the object correctly.

In Fig. 3 and Fig. 4 two example sequences are
shown, for which the tracking without 3D prediction



fails. Even if the large displacement of the contour
in the image plane could be estimated, the simul-
taneous growing of the contour cannot be predicted
without a 3D model. As one can see, with the BV
prediction step, the vehicles can be tracked correctly.

In Fig. 5 the estimated relative distances for the
three vehicles (the van, the tanker, and the truck)
are shown. No absolute 3D position can be com-
puted, because no exact model for the vehicles and
no calibrated cameras are available. But as one can
see, the relative change in the distance corresponds
to the movement of the camera towards the three
vehicles.
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Fig. 5: Estimated relative distance of the three ve-
hicles (see Fig. 2) to the camera over the image se-
quence by means of the BV. The change in distance
corresponds to the movement towards the vehicles.

4 Discussion and Future

Work

In this contribution we have shown, that the pro-
posed prediction method for active contour models
is well suited to improve the performance of a data
driven tracking. Weak object contours, large dis-
placements of the moving object and sudden loss of
the object can be handled. The BV itself of course
cannot be taken as an exact representation of the
moving object, i.e. the BV does not always model
the real shape of the object. Nevertheless, the rel-
ative motion (in this case the shrinking or growing
distance), which is the necessary information for a
prediction step, is always modeled exactly. With
this information statements about the motion direc-
tion and velocity of the object can be made, which
is impossible without a 3D estimation.

Up to now, there are several problems. The ini-
tialization of the Kalman{Filter parameters is a very
di�cult task. Thus, if the active contour cannot
track the object without prediction su�ciently long,
the Kalman{Filter may not be in steady state, and
thus predict a wrong motion. In that case, as for
each wrong initialization of the active contour, the
object gets lost.

A second problem occurs, when the active con-
tour slowly looses the object's contour. Then, the
Kalman{Filter will predict an increasing distance of

the object (due to a shrinking contour) or some ro-
tation of the BV, which is not correct. As a result,
a wrong contour is predicted and the object cannot
be tracked any longer.

In our future work, we will also estimate the shape
of the BV during the tracking, instead of using �xed
values. Futhermore, some other motion models of
the cars will be tested.
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