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Abstract

In the past six years many algorithms and models for

active contours (snakes) have been presented. Some of

the work has been applied to static image analysis, some

other to image sequence processing. Despite of the fact

that snakes can be used for object tracking, no com-

parative study of the performance for real{time object

tracking is known up to now.

In this paper we compare several active contour mod-

els presented earlier in the literature for object tracking:

the \Greedy" algorithm, the dynamic programming ap-

proach, and the �rst work of Kass, based on the vari-

ational calculus. We discuss and compare the various

active contour models with respect to the quality of con-

tour extraction, the computation time and robustness.

All evaluation is done using sequences, grabbed during

closed{loop real{time experiments.

1 Introduction

Active contour models (snakes) have been proven to be a

promising approach in many di�erent �elds in computer

vision. They have been applied to image segmentation

and to the analysis of static images and image sequences,

even in real{time systems [2, 5, 10]. The inherent local

processing of an image | nearby the snake elements |

also makes active contour models suitable for the use in

real{time active vision systems.

Many extensions of the original approach have been

suggested, referring to the de�nition of the energy as

well as to the energy minimization [1, 2, 3, 4]. But, the

models have always been presented in a special area of

applications. Thus comparisons between the di�erent

approaches or predictions of the behavior of one model

in another area of application can hardly be drawn. Es-

pecially in the �eld of real{time object tracking in a

closed loop of sensor and actor, di�erent special points

should be taken into account while estimating the suit-

ability of an active contour model: the computation

time for extracting the moving object's contour, the ro-

bustness of the contour extraction also in the case of

weak object's contours, or changing illumination condi-

tions; another aspect is the accuracy of contour extrac-

tion, also in the case of shrinking or growing contours

due to changing views of the object. Finally, the possi-

bility of an automatic initialization should be taken into

consideration.

Up to now, no comparison of the di�erent models

and energy minimization schemes for real{time object

tracking is known, which enables someone to choose the

optimal active contour model. Thus, in our contribu-

tion we investigate the most important active contour

models, i.e. the dynamic programming approach, the

greedy algorithm and the original model based on the

variational calculus, and draw qualitative comparisons

referring to the suitability in real{time object tracking.

We make use of the detected weak and strong points of

each model to de�ne extensions for the variational ap-

proach, which we show to be suited to ful�ll the above

demanded properties of an active contour for tracking

in a real{time system.

The comparison is done in a real{time object track-

ing system [6, 7]. A qualitative judgement for the quality

and robustness of the contour tracking is employed. No

specialized hardware but only standard Unix worksta-

tions are used.

2 The Active Contour Models in the Com-

parison

An active contour can be described as a parametric

function v(s) = (x(s); y(s)), s 2 [0; 1], with x(s) 2

[0; xmax]; y(s) 2 [0; ymax]. Such an active contour has



an energy E
� de�ned by

E
� =
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[Ei(v(s)) +Ef (v(s)) +Ec(v(s))] ds:(1)

In most cases the internal energy Ei is given by

Ei(v(s)) =
1

2

�
�(s)jvs(s)j

2 + �(s)jvss(s)j
2
�
; (2)

where vs and vss are the �rst and second derivatives of

v with respect to s. Ef describes the forces of the image

on the snake andEc summarizes all the other constraints

of the snake, for example, connections of snake elements

to image features (spring forces) or the limitation of the

distance between the snake elements [9].

In our contribution we compare the following active

contour models:

� Energy minimization with the variational calculus

[9] (Abbreviation VARN | with matrix inversion

after each minimization step, VAR | with matrix

inversion only once for each new image)

� The dynamic programming approach [1] (DP)

� The \Greedy" algorithm [11] (GRDY)

Additionally, we present several improvements of the ac-

tive contour model based on the variational Calculus

(IMPR) with respect to real{time object tracking:

� For each snake element we �x it on its old position

with a weak spring force.

Ec(v(s)) = �1(v(s)� vold(s))
2 (3)

The vector vold(s) is the position the snake has

reached after the energy minimization in the pre-

vious image. This limits the possible movements

of the elements during the energy minimization,

because large movements are punished in the en-

ergy term, weighted with the parameter �1. We

use the same value �1 for all snake elements.

� For decreasing the computation time we minimize

the energy without inverting the matrix (A+ 
I)

[9] at each minimization step. We compute the

inverse matrix only once at the beginning of the

tracking. This corresponds to the calculation of

the snake element's position out of a linear com-

bination of its neighbors, where the in
uence of

neighboring elements decreases with the distance

to the actual element (see Figure 1). Because of

the computation time reduction the number of it-

eration steps can be increased and we can choose

a smaller value for the step size of the iterative

minimization.
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Figure 1: In
uence of the snake elements on the position

of the 8th element for di�erent combinations of � and

� using a constant matrix A (x{axis: snake element,

y{axis: in
uence of the snake element's position).

� We use blowing forces known from the balloon

model [3]. Because an active contour based on

the variational calculus tends to shrink, we blow

up the snake before minimizing the energy for the

new image.

vstart(s) = vold(s) + �2n(s) (4)

The vector n(s) is the normal unity vector on the

contour point vold(s), directing outside the con-

tour. vstart(s) is the starting position of the snake

for the new image. The same value �2 is used for

all snake elements.

Our real{time experiments show that these improve-

ments lead to a more robust object tracking compared

to the original model, i.e. the number of times, the

tracked object is lost can be reduced, and to a more

accurate one, i.e. the quality of contour extraction is

improved.

3 Experimental Environment

We integrate the models into the tracking system for

real scenes described in [6, 7]. Within this closed{loop

object tracking, we can evaluate the e�ciency for real{

time applications. A moving toy train is tracked by

steering a robot's arm holding a camera. The system is

divided up into two parts: the object detection and the

object tracking using snakes. The control of the robot

is done on a second machine, connected with the ob-

ject tracking process by using a programming library for

communication between workstations in a workstation

cluster (PVM, [8]). No specialized hardware for compu-

tation is used. All algorithms are running on standard

Unix workstations (HP-735), implemented in an object{

oriented image processing environment. We judge the

results in a qualitative manner. During the tracking the



method speed max # # lost p
c

20
p
c

10
p
c

5

tracked

VAR 0.8 426 1 93 43 13

1.4 326 3 76 11 8

1.8 205 16 73 33 8

2.4 153 18 66 33 8

VARN 0.8 600 0 100 71 12

1.4 337 5 97 84 18

1.8 255 6 92 71 18

2.4 105 20 66 40 7

GRDY 0.8 387 1 92 46 7

1.4 483 2 100 63 36

1.8 259 3 97 46 4

2.4 119 19 77 50 8

IMPR 0.8 453 1 76 75 33

1.4 453 1 97 70 29

1.8 599 0 98 92 30

2.4 313 5 96 75 15

Table 1: Results over 600 images for each model: the

speed of the object (cm/sec), the max. number of con-

secutive images, for which the object could be tracked,

the number of times the object has been lost, and the

percentage in which the object is less than 20,10 and 5

pixels from the center of the image (128,128) (see equa-

tion (5)).

frame grabbing and robot motion is always done in such

a way that the center of the snake coincides with the cen-

ter of the digitized camera image. We use a simple light

object in front of a dark background. By calculating the

center of mass cm(t) of the pixels with a value greater

than a given threshold we get the real center of the ob-

ject in image at time t. Comparing these coordinates

with the center of the image which should be identical

in the case of a precise tracking, we get a measurement

for the tracking error:

p
c

d
=
jft j jcm(t)� cj � dgj

n
(5)

where pc
d
is the percentage of images, in which the center

of mass of the object is less than d pixels from the center

c of the image at time t, n being the number of images.

We have run several experiments for every snake

model. The speed of the object has been varied between

0.8 cm/sec and 2.4 cm/sec. Due to a very moderate

frame grabbing rate of our workstations this is equal to

a displacement in the image between 4 and 8 pixels at

a distance of 1.5{2.0 meters to the moving object. The

energy �eld has been smoothed with a 3�3 mean �lter.

In the experiments each model was used to track 600 im-

ages at four di�erent speeds (see Table 1). Since we are

interested in real time tracking, we are forced to choose

the number of iterations and the number of contour el-

ements in a way such that the energy minimization can

be done within the image frame rate (about 3 frames

per second).

The chosen experimental environment is, of course

well suited for other object tracking methods, for ex-

ample line{based tracking algorithms. Since we are not

interested in judging the method of active contours for

real{time object tracking, but in comparing the di�erent

approaches within this framework, our experimental en-

vironment is well suited to get informations about the

behavior of the models in a real{time closed{loop ap-

plication, i.e. automatic initialization, robustness and

accuracy. Nevertheless, we have taken another sequence

(Figure 4) to verify our results, for which, for example

a line{based tracking method, would fail.

4 Results

Table 1 shows the results of the algorithms. In Figure 2

representative images of the tracking with the proposed

improvements (IMPR) are shown. The results for the

dynamic programming approach cannot be found in Ta-

ble 1 because even for the slowest speed of the object,

the computation time for the energy minimization has

been too large. One can see that VARN leads to a more

accurate result than VAR. But the complexity of the

algorithm increases, too. Thus, for faster moving ob-

jects, the stability of the tracking decreases. Using the

proposed improvements (IMPR), i.e. no matrix inver-

sion at all and spring forces with an initial blow up of

the snake, we got the best result in our experimental

environment. In Table 1 the stability (4th column) and

Figure 2: Results of the tracking with the proposed im-

provements (IMPR) at a speed of 1.8 cm/sec. Images

50, 100, 150, 200, 250 and 300 of an sequence of 600 im-

ages are shown, grabbed during a real{time experiment.

quality (column 5{7) of the models at di�erent speeds

can be compared. As one can see, all models show a

better tracking quality at a speed of 1.4 cm/sec, com-

pared to the result at a speed of 0.8 cm/sec. The reason



Figure 3: Results of the tracking with GRDY at a speed

of 1.6 cm/sec. Images 150, 180, 210, 450, 480, and 510

of an sequence of 600 images are shown, grabbed during

a real{time experiment.

METHOD TIME (msec)

DP 800

VAR 110

VARN 490

GRDY 10

IMPR 80

Table 2: Computation time for one image on a HP-735.

All results are taken from a snake with 16 elements.

is that the robot has a minimum speed which is too

fast for tracking smoothly the moving object at a speed

of 0.8 cm/sec. Thus the robot performs a lot of short

movements which results in a less accurate tracking.

The quality of contour extraction also varies. GRDY

extracts the contour of the object accurately (see Fig-

ure 3) because this method allows to form corners by

automatically setting �(s) of the internal energy to zero

(see equation (2)), dependent on the image data. Us-

ing DP one can extract more complex contours, but as

already mentioned, the computation time is too large.

VAR and VARN are very sensitive to noise in the im-

age, VARN tends to produce a more sti� contour. This

is advantageous for tracking, if the contour of the object

does not change. For an automatic initialization this be-

havior leads to more errors, if the initial contour has not

the shape of the object's contour. This will be true in

nearly all data driven initializations. If a model based

initialization is available, which results in an accurate

shape description of the contour, the sti�ness might be

advantageous.

The contour extracted with IMPR looks in most of

the cases like an egg. Thus, the extracted contour can-

Figure 4: Results of the o�ine tracking with VARN for

the head{sequence (images number 0,30,60,90,108,111).

Images 108 and 111 show the e�ect of the blowing forces:

Although partially loosing the contour, the active con-

tour catches again the contour of the head.

not be used for a segmentation of the image, and one

needs an additional step to extract the contour of the

object accurately. For that, IMPR provides the region,

in which the segmentation (for example line extraction)

should be done.

In Table 2 the computation time for the di�erent

models can be seen. We have measured the time for

extracting the contour of a moving object in one image

using 16 contour elements. The time for image acquisi-

tion and preprocessing (edge extraction and smoothing)

is not included. For DP and GRDY the convergence

criterion described in [11] has been applied. For VAR,

VARN and IMPR 400 iterations have been carried out.

Figure 5: Results of the o�ine tracking with DP (�rst

row) and GRDY (second row) for the head{sequence.



In Figure 4 (IMPR) and Figure 5 (DP and GRDY)

the veri�cations of the real{time results on another im-

age sequence processed o�ine can be seen. Especially in

Figure 5 possible source of errors for GRDY and DP can

be seen. First, for larger displacements (in these images

12 pixels) the search area for the energy minimization

might be too small. By increasing the search area, the

chance to extract a background edge near the object in-

creases, too. Using approaches based on the variational

calculus (VAR, VARN, IMPR), the maximal displace-

ment depends on the smoothing of the external energy.

Additionally, this does not in
uence the computation

time of the energy minimization. Of course, by largely

smoothing the external energy the edges of small ob-

jects can disappear, which is one disadvantage of the

variational calculus approach. Secondly, single snake el-

ements, which are in a homogeneous area (for example,

the horizontal background edge in Figure 5, �rst row)

with a large external energy compared with the rest of

the image, remain in this area, until the internal energy

grows su�ciently to force a movement of these elements.

This depends on the parameter setting and is di�cult

to adjust.

5 Summary

In our work, di�erent snake models have been compared

with respect to real-time contour tracking. The time

complexity of the dynamic programming approach is too

large and thus this approach is not suited for tracking a

contour in real{time without specialized hardware. Nev-

ertheless, this approach might be applied to static image

analysis. The \Greedy"{algorithm is computationally

inexpensive and therefore well suited for real{time ap-

plications. The variational approach leads to a better

result, if the matrix is inverted at each minimization

step. But this needs too much computation time with-

out specialized hardware. Thus tracking is only possi-

ble for slowly moving objects. The energy minimiza-

tion with a matrix inversion for each new image is, of

course, computationally less expensive but the results of

the tracking can be improved only moderately for faster

moving objects. By visually judging the result of the

active contours in Figure 2 and Figure 3 one gets the

impression that GRDY might be the best approach in

this context. But the overall results of the experiments

at di�erent speed (Table 1) show that the best result

in the context of data driven real{time object tracking

with respect to stability and quality, could be achieved

with our proposed improvements (IMPR). Even for the

maximum speed of 2.4 cm/sec the tracking can be done

very robustly compared to other models. But, as already

mentioned, this method lacks the necessary accuracy for

a segmentation of the object's contour. For this �eld of

application DP and GRDY should be used.

We have not included a prediction step in our com-

parison, because in this case the quality of the tracking

mostly depends on the quality of the prediction step and

not on the applied active contour model.
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