
0

Learning, Tracking and Recognition of 3D Objects
J. Denzler, R. Be�1, J. Hornegger, H. Niemann, D. Paulus

The following was printed in the proceedings

IROS 94

M�unchen

Sept. 1994

1This work was partially funded by the German Research Foundation (DFG) under grant number SFB 182. Only the authors are
responsible for the contents.



J. Denzler, R. Be�, J. Hornegger, H. Niemann, D. Paulus IROS 94 1

Learning, Tracking and Recognition of 3D Objects
J. Denzler, R. Be�, J. Hornegger, H. Niemann, D. Paulus

Lehrstuhl f�ur Mustererkennung (Informatik 5)

Universit�at Erlangen{N�urnberg

Martensstr. 3, D{91058 Erlangen, Germany

Abstract

In this contribution we describe steps towards the implementation of an active robot vision system. In a sequence of

images taken by a camera mounted on the hand of a robot, we detect, track, and estimate the position and orientation

(pose) of a three{dimensional moving object. The extraction of the region of interest is done automatically by a
motion tracking step. For learning 3{D objects using two{dimensional views and estimating the object's pose, a

uniform statistical method is presented which is based on the Expectation{Maximization{Algorithm (EM{Algorithm).

An explicit matching between features of several views is not necessary. The acquisition of the training sequence
required for the statistical learning process needs the correlation between the image of an object and its pose; this is

performed automatically by the robot. The robot's camera parameters are determined by a hand/eye-calibration and

a subsequent computation of the camera position using the robot position. During the motion estimation stage the
moving object is computed using active, elastic contours (snakes). We introduce a new approach for online initializing

the snake on the �rst images of the given sequence, and show that the method of snakes is suited for real time motion

tracking.

1 Introduction

Current research in image analysis increasingly focuses

on applications involving moving parts using real world

scenes. Neither the objects nor the visual devices are sta-

tionary. Active manipulation of the cameras as well as

the objects in the scene are common to the systems. The

well known Marr paradigm [11] is extended to embody

this situation. In addition to an interpretation of the vi-

sual data, actions have to be performed. A closed loop of

active devices and the interpretation of the image analy-

sis system imposes new constraints on the architecture.

For such a system to operate, various interacting modules

have to contribute their results to a general control mod-

ule. A list of references for known algorithms for tracking

and classifying moving objects can be found in [8].

In this paper we present a system design for image

analysis in a robot application. The so called problem

domain consists of a moving toy train 2 on a table; 3 a

stereo camera system and a third camera mounted on a

robot's arm observe this scene. Here, we investigate the

problem of following a moving object in this scene and

estimating its pose. Furthermore, the system includes the

capability of learning new objects automatically using dif-

ferent views of an object. First, an o�line calibration of

the robot's camera is done (section 2). Using the calibra-

tion data di�erent views of the object are captured with

known camera parameters. A statistical training method

is applied for learning the object (section 3). It renders

the computation of 3{D structure without feature match-

ing of several two{dimensional views.

After the training stage, the object starts moving in

the scene. An attention module has to detect and track

the moving object in the subsequent images (section 4).

Tracking is performed by active contour models [7]. Un-

like other work we describe an online initialization of the

snake | a closed contour around the moving object, see

section 4 | on the object's contour in the �rst image. The

tracking task with a modi�ed snake algorithm satis�es the

requirements with respect to real time computation and

tracking performance. While tracking one object we com-

pute point features of the object itself. These features can

now be given to the classi�cation stage for pose estima-

tion. The algorithm for the calculation of the position of

the object is also derived from the EM{Algorithm. The

paper concludes with experimental results revealing ad-

vantages and problems of the approach (section 5), and

an outlook for future research.

2 Camera Calibration

The training algorithm in the statistical approach for ob-

ject recognition, described in the following section, needs

a sample of images. This sample has to show di�erent

2{D views of an object taken from randomly chosen cam-

era positions. An approach to get these images is to use

the camera which is mounted on the gripper of the ro-

bot and determine its position from the information the

robot can give about the position of its gripper. If the

transformation between the position of the camera and

the robot's gripper is known, we will compute for each

view both the camera position and the corresponding ro-

bot position. After that we can stop at the computed

2Lego toy train: donation of LEGO, Germany
3No domain dependend knowledge is used in this model
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position and capture an image. Hereby image acquisition

can be performed automatically.

We use the approach of Tsai and Lenz, described in de-

tail in [16] to determin the transformation between gripper

and camera. The determination is trivial, if the position

and orientation of an object in the robot coordinate sys-

tem are given, and if the relative position and orienta-

tion of the camera with respect to the object is observ-

able. However, an accurate determination of an object's

position with respect to the robot coordinate system is

a nontrivial problem; Tsai and Lenz note that some au-

thors treat this problem as part of a large non-linear opti-

mization process. The approach of Tsai and Lenz allows

to measure the position and orientation of gripper and

camera in two di�erent coordinate systems. From a se-

quence of at least three pairs of positions they compute

the transformation. The camera position will be deter-

mined by camera calibration: From the image of a pattern

with a number of accurately measured calibration points

the parameters of the transformation between world coor-

dinates (de�ned with respect to the calibration pattern)

and camera coordinates will be computed. The transfor-

mation between robot coordinate system and the gripper

is measured by the robot's hardware.

The camera model chosen for the mapping between ob-

ject and image is the pin hole model with radial lens dis-

tortion. If from at least 11 points both the world and

the image coordinates are known, one may compute the

parameters of the mapping, including the transformation

between camera and world coordinates [9].

The transformations explained in this paper are de-

scribed using the Denavit{Hartenberg notation [4]. Every

transformation of a coordinate system A in a coordinate

system B is de�ned by a homogeneous transformation
BHA. With hA = (x; y; z; 1)t de�ning a point (x; y; z)t
in coordinate system A the following equations hold:

BHAhA = AHB
�1
hA and CHB

BHAhA = CHAhA

Figure 1 graphically shows the homogeneous transfor-

mations and the coordinate systems used in this paper:

Gi and Gk the gripper coordinate system G at position i

and position k; Ci and Ck the camera coordinate system

at position i and position k; the robot coordinate system

R and the world coordinate system W .

From a sequence of images fk; k = 1; :::; n taken from

di�erent positions one may determine the transformations
CkHW by camera calibration and the transformations
RHGk

from the position measured by the robot. The ro-

tation matrix GRC and the translation vector GtC which

together de�ne the gripper/camera transformation GHC

will be determined separately.

Any rotation may be de�ned by a rotation matrix R

or one{to{one by a single vector pR, which is given by

pR := 2 sin �R
2
rR (0 � �R � �) , where rR = (n1 n2 n3)t

is the rotation axis with direction cosines n1, n2, n3 and

�R is the rotation angle. Because a rotation axis does not

change during a rotation around itself it may be computed

as the Eigenvector of R corresponding to the Eigenvalue

1, which is the solution of the equation RrR = rR .

Vice versa R may be computed from pR by:

R =

�
1�

jpRj
2

2

�
I +

1

2
(pRpR t + �S(pR)); (1)

where � =
p
4� jpRj2 and S stands for a 3 � 3 skew

matrix:

S(p) :=

0
@ 0 �pz py

pz 0 �px
�py px 0

1
A :

For details and a derivation of equation 1 see [16].

For better readability the following abbreviations for

the rotation axis and the rotation angle of a rotation ma-

trix BRA will be used:

BrA := rBRA

B
�A := �BRA

If we denote the transformations between two camera or

gripper positions by CkHCi
= CkHW

WHCi
and GkHGi

= GkHR
RHGi

, the computation of the transformations

will be performed in the following two steps:

1. At �rst the rotation axis GrC and the rotation angle
G
�C are computed. Together they de�ne the rotation

matrix GRC .

The auxiliary vector Gp
0

C is de�ned by:

Gp
0

C :=
1

2 cos (G�C=2)
GpC =

1p
4� jGpC j2

GpC :

For each pair of stations i; k one gets a system of equa-

tions linear in the components of the vector Gp
0

C :

S(GkpGi
+ CkpCi

)Gp
0

C = CkpCi
� GkpGi

: (2)

Because S(v) is singular for all v one consequently

needs at least two pairs of stations to get an un-

ambiguous solution by the minimization of the mean

square error.

Using Gp
0

C the values for G�C will be determined by

G
�C = 2arctan jGp

0

C j and GpC =
2Gp

0

Cq
1 + jGp

0

C j
2

:

2. If GRC is known, GtC will be determined.

Two pairs of stations i; k result in two sets of three

linear equations:

(GkRGi
� I)GtC = GRC

CktCi
� GktGi

: (3)

Again the solution is determined by the minimization

of the mean square error.
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Figure 1: Coordinate systems and transformations as explained in section 2. The constant transformation GHC is

computed from at least three di�erent positions of camera and gripper, two of which { Ci, Gi and Ck, Gk { are sketched

in the �gure.

Proofs for the equations 2 and 3 can be found in [16].

The time needed for the calculation of the grip-

per/camera transformation is dominated by the time

needed for feature extraction during camera calibra-

tion.

3 Learning and Classi�cation

Using the calibrated camera we can generate a set of 2{D

views of an object including the parameters for rotation

and translation in the 3{D space. Based on these training

data the following section describes an approach for the

learning and recognition of objects in the given environ-

ment. Motivated by segmentation errors and the instabil-

ity of edge features we choose a statistical framework with

parameterized probability density functions. Each observ-

able feature is understood as a random variable and asso-

ciated with a density function for modeling its uncertainty.

Since the distribution of features occurring in the image

plane depends on the object's pose, we presume that these

density functions result from projections of the feature

distributions in the model space. The density function for

rotated and translated model features projected into the

image plane can be computed using the algebra of random

variables (see [15]). The problem of learning objects in this

mathematical context corresponds to the parameter esti-

mation of the mixture distribution in the model space.

The training samples are transformed model features,

where the transformation is a non injective mapping, and

additionally we do not know the matching between the

image features in the learning views. The classi�cation

is based on a combination of maximization of a posteri-

ori probabilities and a parameter estimation problem for

pose determination. We leave out an abstract mathemati-

cal description of the training and classi�cation algorithms

(see [6]) and explain a special statistical model which was

implemented and evaluated in a number of experiments.

Nevertheless, we need some notational remarks. The set
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of observable features in the j{th sample scene is denoted

by Oj = fOj;1;Oj;2; : : : ;Oj;mg; let the number of views

for training be J . Furthermore, we abbreviate the set of

model features withC� = fC�;1;C�;2; : : : ;C�;ng. For ex-

ample, the features used here are points. Since a scene in-

cludes also background features we introduce C�;0, where

all observable features of the background are assigned to.

Each feature C�;i (i � 1) of a three{dimensional model is

assumed to be normally distributed. Additionally, the sta-

tistical behavior of the background features C�;0 among

individual instances of observable scenes is described by

uniform distributions. In [17] it was shown by statisti-

cal tests that point features in grey{level images satisfy

these assumptions. We use these results and generalize

for 3{D model primitives that this observation is based

on a Gaussian distribution of features in the model space.

If an a�ne mapping, given by a matrix R and transla-

tion t, transforms a normally distributed variable with

mean vector � and covariance matrix K, then the result

is again Gaussian distributed. The mean vector and the

covariance matrix of the transformed random variable are

R� + t and RKRT (see [15]).

In the implemented algorithms an arbitrary model C�

is represented by a set of 3{D points. A linear transform

which projects a model point C�;i to its corresponding

image point Oj;k describes the geometric relation between

model points and the set of scene features Oj .

Oj;k = RC�;i + t: (4)

The set of observable points is postulated to be normally

distributed, that means the location of the model points

and its projections are assumed to be Gaussian random

vectors.

The training phase now proceeds as follows: We take

images of the 3{D object from di�erent views and detect

automatically edges, vertices, and corners. The rotation

and translation of the object is equivalent to the move-

ment of the robot's arm with its camera. For each image

in the training sample set the rotation and translation

parameters are known due to the fact that the camera

parameters are given. Unknown information during the

learning phase is on the one hand the three{dimensional

structure of the object, i.e. the normal distributions of

3{D points, and on the other hand the matching between

the image points of several views. This should be learned

during the o�{line training step.

Under the idealized assumption that the model features

are pairwise independent and characterized by a mixture

density function the a priori density functions for an ob-

served scene Oj and its pose can be written as

p(Oj;Rj ; tj jB)=

mY
k=1

nX
i=0

p(C�;i) p(Oj;k;Rj; tjja�;i); (5)

where B = fa�;1;a�;2; : : : ;a�;ng represents the set of pa-

rameters of the model's density function, i.e. the set of co-

variance matrices and mean vectors, and p(C�;i) the prob-

ability of observing the model feature C�;i or a projection

of it. We know that all observable 2{D point features are

normally distributed, but the matching among model and

image features is missing. Therefore, it is proposed that

each observable feature can be generated by projections

of each model feature with a special probability. An ex-

plicit matching between model and scene primitives can

be avoided and the probability of observing a scene feature

Oj;k is consequently

p(Oj;k;Rj; tj jB)=

nX
i=0

p(C�;i)p(Oj;k;Rj ; tj ja�;i): (6)

Since the mean �i, covariance matrix Ki, and weight

p(C�;i) for each model feature C�;i are unknown, they

have to be estimated from the learning samples. The es-

timation of parameters and probabilities of mixture den-

sities is most widely done by maximum{likelihood esti-

mates and the algorithms are well studied for non trans-

formed random variables (see [12]). Due to the fact that

both the origin of each observable image feature and the

3{D structure of the object are unknown, it is suggested

to use in the given situation the iterative Expectation

Maximization Algorithm developed by Dempster, Laird,

and Rubin [3], which is suitable for obtaining maximum{

likelihood estimates from incomplete data. The purpose

of the EM{Algorithm is the computation of the density of

the three{dimensional model features using only the ob-

servable 2{D features and the information about the ob-

ject's pose of each view. It is necessary to emphasize that

the projection of model features to the image plane has

no inverse. The application of the EM{Algorithm to our

training problem results in the following training formulas

p̂(C�;l)=
1

J m

JX
j=1

mX
k=1

p(C�;l jOj;k;Rj; tj ;a�;l): (7)

for the probabilities of each feature and the formula for

mean estimates

�̂i=

0
@ JX
j=1

mX
k=1

p(C�;i j Oj;k;a�;i)R
T
j (RjKiR

T
j )
�1Rj

1
A
�1

JX
j=1

mX
k=1

p(C�;ijOj;k;a�;i)R
T
j (RjKiR

T
j )
�1(Oj;k � tj) : (8)

The covariance matrices Ki can be iteratively computed

solving the system of equations

JX
j=1

mX
k=1

p(C�;ijOj;k;a�;i)R
T
j D

�1
i;j D̂i;jD

�1
i;jRj =
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JX
j=1

mX
k=1

p(C�;ijOj;k;a�;i)R
T
j D

�1
i;j Sj;kS

T
j;kD

�1
i;jRj; (9)

where D̂i;j = RjK̂ iR
T
j , Di;j = RjKiR

T
j , and Sj;k =

Oj;k � Rj�i � tj. Formulas (7) and (8) can be imple-

mented easily. The system of equations in (9) has to be

solved. If the dimensions of model and of its projected

point features are known, the equations can be solved a

priori symbolically. For the same reason, even the matrix

inversions in (8) can be computed symbolically and ex-

plicitly implemented. Finally, the formulas show that the

complexity of learning is bounded by O(Jmn). The clas-

si�cation problem in our system should include both the

identi�cation and the pose determination of the moving

object. The computation of rotation and translation can

be done by optimizing the a posteriori density function

p(Rj ; tj jOj) with respect to Rj and tj . The object deci-

sion is made by maximizing the a posteriori probabilities

of all object classes. Since the matching among model

and image features is unknown, we have again a set of

incomplete training samples for estimating these parame-

ters. The EM{theory yields the following optimization

problem for computing the pose parameters:

(R̂j ; t̂j) = argmax
(R̂j ;̂tj)

mX
k=1

nX
l=0

p(Oj;k;C�;ljRj; tj;a�;l)

p(Oj;kjRj ; tj ;B)

log p(C�;l)p(Oj;k j R̂j ; t̂j ;a�;l): (10)

Di�erent techniques for solving this problem can be used

[14]. Continuous local optimization algorithms using gra-

dient information cannot be used without reserve, since

they are only suitable for detecting local extrema. If the

search space is discrete, we can use combinatorial opti-

mization algorithms like simulated annealing, which guar-

antee to �nd a global maximum.

4 Motion

In the previous section we have presented a method for

learning and classi�cation of 3{D objects. Obviously the

success and computation time of pose estimation is consid-

erably inuenced by the number of background features.

This section is devoted to the problem of reducing back-

ground features, i.e. we will describe an algorithm for the

automatic extraction of moving objects from a sequence

of images in order to put these objects to the learning and

classi�cation stage of our experimental environment. For

motion tracking we use active contours; �rst we summa-

rize the principles of active contours.

The energy minimizing model of active contours

(snakes) was �rst introduced by [7]. An active contour

is an energy minimizing spline, which is inuenced by its

own internal energy Eint and by external forces Eext. A

snake S can be de�ned as a parametric function u(l)

u(l) = (x(l); y(l)); l 2 [0; n� 1] (11)

with

x(l) 2 [0; Xmax]; y(l) 2 [0; Ymax] (12)

where Xmax and Ymax are usually given by the size of

the input image. Such an active contour has an energy E

de�ned by

E =

n�1X
i=0

Eint(u(i)) +Eext(u(i)): (13)

The external forces can be the image f(x; y) or the

edge strength of an image, for example Eext(u(i)) =

�jrf(u(i))j
2
. In the case of the edge strength as the

external force during the energy minimization the snake

will be pushed to strong edges, for example the contour

of an object. Further information concerning the snake

model and its behavior can be found in [7] and [10]. In

several papers, for example [2], [10], the advantages of

snakes for object tracking are shown. Given an image se-

quence f1(x; y);f2(x; y); : : : ;fn(x; y) including just one

moving object it is only necessary to initialize the active

contour on the contour of the moving object within the

�rst image. Then the contour of the moving object can

be tracked by placing the snake ut(l) of image f t(x; y) on

the image f t+1(x; y). If the object is moving su�ciently

slow, the snake will extract the object's contour in the

image f t+1(x; y) by energy minimization.

Due to lack of space, this is only a short summary of

the snake procedure and the ideas of tracking moving ob-

jects using snakes. The main problem described in this

chapter is the initialization of the snake by the use of the

�rst image. Most researchers use an interactive initializa-

tion on the �rst image [7], [10]. Here we will describe a

simple method for automatic initializition of the snake on

the second image of a sequence of images, containing one

moving object. For the initialization we assume a non{

moving camera. Since all investigations are aimed to real

time tracking, speed is an important aspect to consider.

For real time motion detection and tracking we need

a fast, computationally e�cient attention module for the

detection of a moving object in a scene. Our �rst version

of the attention module uses a simple di�erence images

algorithm based on low resolution images. Given a se-

quence of images f1(x; y);f2(x; y); : : : ;fn(x; y) of image

size 640 � 480, we proceed in the following way (start the

algorithm at t = 0):

1. Resample the images f t(x; y) and f t+1(x; y) to an

image size of 128 � 128.
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.

.

Figure 2: From top left to lower right: Image 0, 10, 20, of an image sequence of 30 images; di�erence image and

smoothed di�erence image (region of interest); straight line approximation as initialization of snake. The toy train is

moving downhill from left to right.

2. Compute the di�erence image Dt+1(x; y) =

f t(x; y)� f t+1(x; y), where

Dt+1(x; y) =

�
0 ; jf t(x; y)� f t+1(x; y)j < �

1 ; otherwise

3. Close gaps and eliminate noise in the di�erence image

using an appropriate �lter operation (for example a

mean �lter, or a Gaussian �lter; here we used a mean

�lter with a width of �ve) to get the attention map

Datt
t+1(x; y). The set of interesting points in the im-

age { the region of interest { contains the points (x; y)

with Datt
t+1(x; y) = 1.

4. If there is no signi�cant region, we assume that there

is no moving object. Take the next image and go to

step 1.

5. Extract a chain code of the boundary of the binary

region of interest. Approximate the chain code with

straight line segments.

6. If the features (for example the moments or the area)

of the extracted region di�er from the previous region

in a signi�cant manner, then take the next image and

go to step 1 (That means the object is moving into

the �eld of vision of the static camera).

7. Use the start points (or the end points) of the straight

line segments as the initial snake elements positions.

8. Start the snake algorithm. The result is the contour

of the moving object.

The steps 1 - 3 build the attention module. This method is

simple and not a general way to detect and track motion,

but experiments show that it is su�cient in this problem

domain, due to the fact that an active contour collapses

to one point if no external forces are in the image [10].

So a coarse initialization round the moving object is suf-

�cient. One fast way to achieve this coarse initialization

is the described di�erence images algorithm. The method

fails, if the di�erence image does not completely cover the

object, or in the presence of strong background edges near

the object.

Now the tracking algorithm can start with the active

contour. As a result one gets the contour of the moving

object and we can now extract the moving object itself [1]

to classify it using the algorithms described in the previous

section.

5 Experiments and Results

In this section we present �rst experiments and results

of our system. The software is written using the object{

oriented image analysis system �̀���o& described in [13] on

HP 735 workstations. The computation of the transfor-

mation between gripper and camera needs 11 msec when
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24 pairs of positions are used, the robot takes 48 sec to ap-

proach these positions. Segmentation of the image taken

at each position and camera calibration may be done dur-

ing robot movement.

For the estimation of means, covariances, and weights

a parameter initialization of the density function for each

feature is required. The number of features and initial es-

timates of means, covariance matrices, and weights have to

be established. Presently we use in our experiments views

where no occlusion occurs. For simple polyedric objects

the method produces satisfactory results, if we determine

the number of features using one view. The mean vec-

tors are initialized by the observable 2{D point features,

with the depth value set to zero. Empirically, 40{50 views

are su�cient for learning an object with 15 characteris-

tic point{features. Although the convergence rate of the

EM{Algorithm was expected to be considerably low (see

[3]),

0

50
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150

200

250

300

350

0 2 4 6 8 10

Figure 3: The convergence of learning.

the learning process converged in average after 10 itera-

tions. The change in the mean{square error of one ran-

domly chosen estimated mean out of 15 object features

with an increasing number of iterations is shown in Fig-

ure 3. The time needed for one iteration using a very

general C++ implementation of the learning formula (8)

takes 97:98 seconds with 50 training views. The memory

requirements are constant for each iteration. The expe-

riences with methods for pose estimation show that gra-

dient techniques are very sensitive to the initialization of

rotation and translation parameters. The reason for this

observation is that the sample data are limited to the ob-

served features; furthermore the density function for the

a posteriori probability p(R; t jOj) is a multimodal func-

tion (see Figure 4 for two degrees of freedom) and gradient

methods do not guarantee to detect the global maximum.
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Figure 4: Multimodal density function

A detailed description of the motion detection, the

tracking algorithm, the modi�cation to the original snake

algorithm, and implementation details can be found in [5].

# # # % correct

total correct false

65 43 22 66.15

Figure 5: Results of automatic initialization.

In Figure 5 the results of the initialization experiments

are shown. After initializing the snake on the contour of

the moving object this object is correctly tracked over an

average number of 90 images. Three example images out

of our image sequence are shown in Figure 2. Also the re-

sult of the di�erence image between image No. 0 and No.

1 and the straight line approximation of the chain code of

the contour of the region of interest can be seen. In Fig-

ure 6 the result of the tracking with the snake algorithm

is shown. Computing the contour of the moving object

needs 8.81 seconds for the 30 images. Because of a frame

rate of 8.5 images per second this means a real time factor

of 2.5 in our prototypical implementation.

6 Conclusion

In this paper we have described a three{stage system for

an active robot system application. A moving object in

a scene has been tracked with a robot's camera and its

pose can be estimated. The camera calibration { needed

in the learning and classi�cation module { and the math-

ematics for the computation of the camera position from

the robot position were introduced. We have then pre-

sented a new learning and classi�cation module for 3{D

objects based on the EM{Algorithm. To extract a moving

object, whose pose has to be computed out of a sequence

of images, an active vision method with snakes is used.

Therefore we have presented a new method for automatic

initialization of the snake on the contour of the object in

the �rst image. The computation time of a prototypical

implementation of the snake algorithm raises our hope for

a real time motion tracking and classi�cation in the near

future, by the use of a workstation cluster with up to eight

HP-735 workstations.
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Figure 6: Results of tracking the toy train with snakes (image 0, 10, 20).
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