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Abstract

In this paper we present a new method transforming
speech signals to voice source signals (VSS) using arti-
ficial neural networks (ANN). We will point out that the
ANN mapping of speech signals into source signals is quite
accurate, and most of the irregularities in the speech sig-
nal will lead to an irregularity in the source signal, pro-
duced by the ANN (ANN-VSS). We will show that the
mapping of the ANN 1is robust with respect to untrained
speakers, different recording conditions and facilities, and
different vocabularies. We will also present preliminary
results which show that from the ANN source signal pitch
periods can be determined accurately.
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1 Introduction

State of the art pitch period detection is mostly done using
the speech signal or some frequency representation of it.
Within voiced speech one wants to calculate the frequency
of the opening and closing of the vocal folds. Furthermore,
there 1s an increasing interest in the detection of laryngeal-
izations, which are irregular but voiced excitations of the
vocal folds. Two different characterization schemes for the
appearance of laryngealizations in the speech signal with a
fine subcategorization of laryngealizations can be found in
Huber [8] and Batliner [2]. These irregularities are often
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Figure 1: Top: Speech signal with laryngealization. Bot-
tom: Voice source signal, recorded with a laryngograph.

the reason for incorrect pitch period detection using the
speech signal. Furthermore, Huber [8] and Kiefiling [10]
have shown that laryngealizations often occur at linguistic
boundaries so that the detection of laryngealizations can
be used for parsing analysis of the speech signal.

Both pitch period calculation and the detection of laryn-
gealizations can be done much easier using the voice source
signal instead of the speech signal (see Figure 1). Addi-
tionally, the voice/unvoiced decision is trivial on the voice
source signal. The voice source signal can be measured
using pitch detection instruments like the laryngograph
(HeB, [7]). Usually the laryngograph—voice source signal
is not available to a speech recognition system. Therefore
another approach is the transformation of the speech sig-
nal into the VSS by the method of inverse filtering. In
this paper we present a new method for this transforma-
tion using ANNs trained on a set of speech signals for
which a laryngograph signal i1s available.

2 Inverse Filtering with ANNs

It has been shown that ANNs can be applied to tasks like
classification, signal processing or simple mapping of one
data set to another. Lapedes [11] has shown that ANNs
can be used for nonlinear signal processing. Most work
in the field of speech recognition with ANN, for exam-
ple in phoneme recognition [6], [3], pitch detection and
voice/unvoiced decision (for further references see [4]),
concerns feature-to-feature or feature-to-symbol transfor-
mation.

In our approach we map the speech signal directly to the
VSS, i.e. signal-to-signal transformation. Therefore we do
not do any coding of the signals, except a normalization of
the input and output values to the range of [—1,1]. This
is totally different from some other work, where features
were used as input values to the ANN extracted from the
speech signal. We present one frame of the speech signal
to the input layer of the ANN and then get one single
output value at the output layer. This value is interpreted
as one signal point of the VSS. By shifting the speech
signal point-by-point through the input layer, we get the
complete VSS by concatenating the single output values to
one signal. The width of the input frame, 1.e. the number
of input values, and the relationship between the input
frame and the output value will be described in section 4.

Like Lapedes [11] and others we use a multilayer percep-
tron with up to three hidden layers. Each layer n 1s fully
connected with the layer n + 1. We choose the sigmoid
function as the activation function of all the neurons. The
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[5]. We could not obtain an§; poslitive results us:ng the
backpropagation algorithm. No recurrent links were used.

3 The speech data

To train the network we needed a database, in which
speech and voice source signals were recorded in parallel
(database L)*. We got a data set of 114 pairs of speech and
voice source signals (sampling frequency 16 kHz). Within
the data set 8 speakers, 3 male 5 female, spoke German
time of day expressions (for example “zweiundzwanzig
Uhr neun”). To get a lot of laryngealized signals, two
of the 8 speakers (1 male, 1 female) tried to produce ir-
regularities during the recording. One example is shown
in Figure 2. In totaly the data set has a length of 267
seconds of spoken German. We extracted from this set
two subsets, which were used during the training. First
we took one training set consisting of 10 sentences (10 sec-
onds speech), from 6 of the 8 speakers (data set L1). The
two speakers not used for training were used to test the
network performance after the training (data set LT). 6
out of the 10 sentences contained laryngealizations. To re-
duce the computation time (some of our experiments need
two or more weeks on a DEC-Station 5000/200), we used
only this small training set. However, these 10 seconds
conform to more than 20000 training patterns. Secondly
we use a small test set (data base L2) of 18 sentences from
the 8 speakers, containing both laryngealizied and normal
spoken utterances, for testing the network performance
during the training. The rest of data set L. was only used
after training, to make a concluding test of the network.
In the total data set L, the pitch ranges from 33 Hz to 380
Hz, with a mean pitch of 152 Hz and a standard deviation
of ¢ = 62. The training set L1 has a range from 52 Hz
to 353 Hz (mean: 178 Hz, o = 64).

To test the configured ANN with a larger database we
take the so called SPONTAN-data set (S) (sampling fre-
quency 10 kHz, 4 speakers, different recording conditions
from data set L, see [10]), a data set which contains spon-
taneously spoken German sentences. For this speech data
we did not have any voice source signal, but frame-wise
hand—corrected pitch values. Additionally laryngealized
frames were marked by experienced phoneticians.

4 The System

Our system is divided into three parts:

Preprocessing

To reduce high frequencies and low frequencies (in the
VSS high energy low frequencies were caused by larynx
movements) the VSS was band-pass filtered from 20 Hz
to 1000 Hz, the speech signal low-pass filtered with 1000
Hz. Then we sample the signals down to 2 kHz, to reduce
the amount of data.

Processing

The processing simply consists of shifting the speech sig-
nal point-by-point through the input layer of the ANN,
and concatenating the sequence of single output values of

1This database was kindly provided by the Institute of Phonetics
of the L.M. Universitit, Miinchen.
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Figure 2: Example speech and voice source signal out of
the data set L.

the ANN to the VSS, produced by the ANN. We use the
following relationship between the input frame and the
output value: the output value of the net was interpreted
as the value of the VSS, measured at the middle of the
input frame. We used this input/output relationship be-
cause the other possible form of relationship, 1.e. mapping
one frame of the speech signal to one frame of the VSS,
enlarges the net and so the training time. Furthermore,
the mapping would be more complex and one would get
unsteadiness at output frame bounderies.

Postprocessing

To reduce noise in the VSS produced by the ANN we
have to smooth 1t. We used iteratively 5 average filters
whose width depended on the average pitch period of the
ANN-VSS, so that only noisy parts and no period in the
ANN-VSS will be smoothed. The average period is esti-
mated by analyzing every frame of the ANN-VSS in the
frequency domain, searching for the maximum in the spec-
trum. Unvoiced frames are ignored for this estimation.

5 The Error Measure

In most applications of multi-layer perceptrons, the error
criterion is the mean square error (MSE). The MSE is used
to optimize the weights and to judge the quality of the
mapping performance by the ANN. In our case the MSE
is not an exact measure of the quality of the ANN-VSS.
Some visually good signals have a greater mean square
error than visually poor signals. Thus, the MSE is still
used to optimize the weights. However, the quality of the
ANN-VSS is measured in the following way.

We first calculate the pitch period of the reference VSS
on a frame-by-frame basis. For that purpose, we modified
an algorithm developed by Alku [1], to search for relevant
maxima in the VSS. These maxima can only be found ac-
curately if the signal is not noisy, and in a periodic form.
With this pitch synchronous algorithm we calculate the
pitch period of the ANN-VSS frame-by-frame. The pitch
period of an ANN-VSS frame (length of a frame: 12.8
msec) is the average of the distances between all consecu-



within a frame as one whose pitch period differs from the
reference (created automatically and hand-corrected) by
less than 30 Hz. Thus the error is given frame-by—frame
not point—by—point. This is done only for frames of voiced
speech. As we will point out in section 6, this measure-
ment is close to the intiutive judgment of a person who
visually analyzes the ANN-VSS.

6 Experiments and Results

As stated earlier we used multilayer perceptrons with the
quickpropagation learning rule. In our experiments we al-
ways used the sigmoid activation function. We varied the
number of hidden layers, the number of input and hidden
nodes. Here we will present only the most important parts
of the results (further detail can be found in [4]).

First we will describe the iterative training procedure:

1. We train the ANN a fixed and relatively small number
of epochs (15 epochs) with the training set L1.

2. Then we test ANN configured in this way with the
training set L1 and the test set L2. We need this, to
calculate the above defined error measure.

3. We compare the error rate with the error rate of the
last iteration.

4. If the error grows for more than three iterations on
L1U L2 we stop the training; else we go to step 1.

When the ANN is trained all 114 utterances are taken to
test the ANN (data set L). We count again the number of
frames with an error. This number will be shown in the
following as the result of the ANN.

In Table 1 the error rate is shown for the best net. We
got this result after 225 epochs. The net has three hidden
layers with 120 nodes in each layer, 78 input nodes (i.e.

Data set | Error rate in percent
L 3.5
LT 10.2

Table 1: Results of the best net on the complete data set
L, and on the untrained speakers LT.

39 msec) and one output node. To train one epoch, i.e.
20000 training patterns, we need 2000 seconds on a DEC
5000/200.

In Figure 3 an ANN-VSS is shown, from a speech signal
in the training set L1. One can see that the ANN has
even learned to build the irregularities in the VSS at the
laryngealized frames 32-38. In Figure 4 a speech signal
from the data set LT is shown. This is one of the worst
cases for data set LT. Nevertheless the ANN transforms
the “normally” voiced frames 35-45 correctly to the VSS.
Only the laryngealized parts (frames 30-36 and 45-53)
are not well transformed. Further experiments will have
to show whether the detection of laryngealizations can be
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Figure 3: Speech signal, voice source signal and ANN-VSS
of the training set L1.

done better in the transformed signal rather than in the
original speech signal.
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Figure 4: Speech signal, voice source signal and ANN-VSS
of an untrained speaker (data set LT)

Additionally we tested our best ANN with the data set
S. We do that because we can test a larger set of ut-
terances. One can see how the ANN transforms speech
signals, recorded under different conditions and facilities
and spontaneous spoken from untrained speakers. Addi-
tionally this test set contains a different vocabulary than
the training data set. Since we have a reference pitch
period for all the utterances, we can test the ability to
determine pitch correctly from the ANN-VSS.

For all four speakers of the data set we compare the
number of incorrect frames with the number of incorrect
frames of a pitch determination, based on the spectrum
of the speech signal with the algorithm described in [9].
The pitch period determined from the ANN-VSS is on the
average up to 10 % better than the pitch determined from
the speech signal. This shows that the ANN-VSS can be
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Figure 5: Speech signal and ANN-VSS of a speaker in
data set S (no reference VSS available).
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Figure 6: Speech signal and ANN-VSS of a speaker in
data set S (no reference VSS available).

In Figure 5 one of the speech signals and the ANN-VSS
of data set S is shown. One can see that during regu-
lar, non-laryngealized speech the ANN-VSS is quite ac-
curate. During the laryngealization the ANN interpolates
the VSS signal, i.e. no irregularities in the ANN-VSS are
produced. In Figure 6 the other type of transformation at
laryngealizations is shown. As in Figure 5 during regular
speech the ANN-VSS is accurate. Within the frames 18—
27 the ANN produces a nearly constant low energy signal.
This can be useful for detecting laryngealizations.

7 Discussion

We have shown that an ANN can be trained which
transforms speech signals to voice source signals quite
accurately.  Probably most of the errors are caused
by voiced/unvoiced transitions and by laryngealizations.
This inverse filtering is robust to untrained speakers, dif-

Plots of the ANN-VSS show that laryngealizations may
also be detected in the ANN-VSS. We will investigate
this in future work. Further work will also be done using
larger networks and larger training sets.
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