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Abstract

Active object tracking, for example, in surveillance tasks,
becomes more and more important these days. Besides the
tracking algorithms themselves methodologies have to be
developed for reasonable active control of the degrees of
freedom of all involved cameras.

In this paper we present an information theoretic ap-
proach that allows the optimal selection of the focal lengths
of two cameras during active 3–D object tracking. The se-
lection is based on the uncertainty in the 3–D estimation.
This allows us to resolve the trade–off between small and
large focal length: in the former case, the chance is in-
creased to keep the object in the field of view of the cameras.
In the latter one, 3–D estimation becomes more reliable.
Also, more details are provided, for example for recogniz-
ing the objects.

Beyond a rigorous mathematical framework we present
real–time experiments demonstrating that we gain an im-
provement in 3–D trajectory estimation by up to 42% in
comparison with tracking using a fixed focal length.

1. Introduction

This paper is not about a new tracking method. The main
goal is to provide a framework for actively controlling the
focal lengths of a camera pair while tracking a moving ob-
ject in 3–D. Why are we interested in actively changing the
focal length of cameras during tracking at all? At first, when
considering surveillance tasks, like supervision of people in
public buildings, the goal is not just to keep track of the
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moving person. It might also be necessary to identify peo-
ple. And for identification (for example, face recognition)
it is crucial to provide the algorithms with the highest reso-
lution possible. Secondly, simple geometric considerations
lead to the observation that 3–D estimation by means of ob-
servations in two image planes is improved in accuracy, if
a larger focal length is used (assuming image noise being
independent of the focal length). Summarizing, active fo-
cal length control during tracking can help to reduce un-
certainty both in tracking and 3–D estimation, as well as in
subsequent processing steps like recognition.

What are the problems when controlling the focal length
during tracking? The main aspect, which we callfocal
length dilemmais the following: a larger focal length is
usually preferred since more details of the moving objects
are available in the image. At the same time, the risk is
increased that the object is no longer completely visible
or even totally out of the field of view of the camera. In
other words, actively controlling the focal length makes it
necessary to resolve this dilemma for each time step. The
more knowledge about the 3–D position and trajectory of
the moving object is available the larger the focal length
can be set and as a consequence the more certain the esti-
mation will be. On the other hand, the more uncertainty is
remaining the smaller the focal length should be to avoid
that the object is unexpectedly leaving the field of view of
the camera.

To our knowledge no other work can be found on active
focal length selection for improving accuracy in 3–D object
tracking as stated above. In [7] focal length control is used
to keep the size of the object constant during tracking, but
without taking into account the uncertainty in the localiza-
tion of the object. The work of [9] demonstrates how cor-
ner based tracking can be done while zooming using affine
transfer. However, the focus is not on how to find the best
focal length. Most related to our work are publications from



the area of active object recognition, where the best param-
eters of a camera (for example, position on a hemisphere
around the object) is searched for, to reduce uncertainty in
the recognition process [1, 3, 5, 11, 13, 14].

The theoretical foundations for our approach stem from
a work on active object recognition and state estimation us-
ing information theoretic concepts [5]. The metric for sen-
sor data selection, the mutual information between state and
observation, results in the reduction of uncertainty in state
estimation. In our contribution this metric is transferred to
the case of focal length control for active object tracking.
For that purpose, we embed the task of focal length con-
trol into the context of probabilistic state estimation. The
notation of the Kalman filter usually applied in this area is
slightly modified to handle time variant observation mod-
els (Sec. 2). This modification is required, since controlling
the focal length inherently means changing the observation
model over time. Applying the Kalman filter during state
estimation yields a straight forward computation of the un-
certainty in the state estimation. Three steps form the main
impact of our work (Sec. 3):

1. the measure of uncertainty is derived from well
founded information theoretic concepts. It is depen-
dent of the focal length, so that we can influence the
uncertainty by controling the focal length

2. the resulting metric can be computed a priori before
any observation has been made from the moving object

3. thanks to the probabilistic modeling of the whole pro-
cess we can reduce resolving thefocal length dilemma
to solving an optimization problem

The general mathematical formalism is applied to the case
of tracking with two active cameras. Real–time experiments
presented in Sec. 4 show that the active approach leads to an
improvement in estimating the trajectory of a moving ob-
ject in 3–D by up to 42%, compared with a strategy, where
a fixed focal length is applied. Additionally, the approach
shows the expected behavior of focal length control: for ex-
ample, a large focal length is set, while the object stands
still, and a small focal length, if the motion trajectory is not
smooth and as a consequence the predicted position of the
object at the next time step is very uncertain. This makes
the approach valuable for further extensions, like combined
tracking and recognition tasks, summarized in Sec. 5, where
also further conclusions and an outlook to future work can
be found.

2. Review: Kalman Filter for Changing Obser-
vation Models

In the following we consider a dynamic system whose
state at timet is summarized by ann–dimensional state vec-

tor xt. The dynamic of the system is given by

xt+1 = f(xt, t) + w , (1)

with f(·, ·) ∈ IRn being the state transition function and
w ∈ IRn being additive Gaussian noise with zero mean and
covariance matrixW . The observationo t is given by the
observation equation

ot = h(xt, at) + r , (2)

which relates the statext to the observationot ∈ IRm. The
function h(·, ·) ∈ IRm is called observation function and
might incorporate the observations made byk different sen-
sors. Again, an additive noise processr ∈ IRm disturbs the
ideal observation, with zero mean and covariance matrixR.

The main difference to the standard description of a dy-
namic system and its occurrence in the world defined by the
observation equation is the dependency of the observation
function h(xt, at) on the parameterat ∈ IRl. This vec-
tor summarizes all parameters that influence the sensor data
acquisition process and as a consequence the observationo
that is made by the sensors. One example for the parameter
at might beat = (αt, βt, ft)

T, with the parametersαt and
βt denoting the pan and tilt angles and the parameterf t rep-
resenting the motor controlled focal length of a multimedia
camera at time stept.

For the time being let the parameterat be known and
constant. State estimation of the dynamic system is per-
formed by applying the standard Kalman filter approach.
For simplicity we use the first order extended Kalman filter.
The following notation is used:

• x̂−
t is the predicted state estimate at timet without hav-

ing made an observation.

• x̂+
t is the state estimate at timet incorporating the ob-

servation made at timet.

• x̂t is the state estimate at timet shortly before the state
transition to time stept + 1. The estimate iŝxt = x̂+

t

if the system has made an observation. The estimate
equalsx̂t = x̂−

t if the system could not make an ob-
servation at time stept to update the state prediction.

• P−
t is the covariance matrix for the predicted statex̂−

t ,
P +

t the covariance matrix for the state estimatex̂+
t

after the observation.Pt is the covariance matrix of
the state estimatêxt and will coincide withP −

t orP +
t

depending on whether or not an observation could be
made.

Using the defined quantities, the Kalman filter cycles
through the following steps [2]:

1. State prediction

x̂−
t = f(x̂t−1, t − 1) . (3)



2. Covariance prediction

P−
t = fxPt−1f

T
x + W (4)

with fx =
[∇xfT(x, t − 1)

]T
x=bxt−1

being the Jaco-
bian of the functionf evaluated at the latest state esti-
mate.

3. Filter gain computation

K = P−
t hT

x(at)
(
hx(at)P−

t hT
x(at) + R

)−1
,
(5)

with hx(at) =
[∇xhT(x, at)

]T

x=bx−
t

being the Jaco-

bian of the functionh evaluated at the latest state esti-
mate.

4. Update of state estimate (incorporation of observation
ot)

x̂+
t = x̂−

t + K
(
ot − h(x̂−

t , at)
)

. (6)

5. State estimate covariance update

P +
t (at) = (I − Khx(at))P−

t (7)

depending on the chosen parametera t that defines the
observation functionh(xt, at).

The linearization by computing the Jacobian of the state
transition function and the observation function introduces
errors in the state estimate. There are several ways for re-
ducing these errors (for example, using the second order ex-
tended Kalman filter [2]), or avoiding this linearization at all
(for example, applying the iterated extended Kalman filter
[2] or more modern approaches like particle filters [6, 10]).
Here, we do not want to discuss the consequences and pos-
sible improvements for state estimation in general. Some
remarks about combining our approach with other state es-
timators are given in the conclusion.

The linearization shown above allows us to model all
distributions of the involved quantitiesx−

t , ot, andx+
t as

Gaussian distributions. Thus, we get the following distribu-
tions:

• A priori distribution over the state (and posterior,
if no observation is made)p(xt|Ot−1,At−1) ∼
N (x−

t , P−
t ), with the two sets At =

{at, at−1, . . . , a0} and Ot = {ot, ot−1, . . . , o0}
denoting the history of actions and observations
respectively.

• Likelihood functionp(ot|xt, at) ∼ N (h(x̂−
t , at), R)

• A posteriori distribution over the state (if an observa-
tion has been made)p(xt|Ot,At) ∼ N (x+

t , P +
t (at))

These three distributions are essential ingredients of our
proposed optimality criterion, which is presented in the fol-
lowing.

3. Active Focal Length Control

In this section we develop a general optimality criterion
for the selection of focal length parameters, which will re-
sult in largest reduction of uncertainty in the following es-
timation step. We like to stress that focal length control
must be decided forbeforean observation is made. In other
words, the criterion must not dependent on future observa-
tions. The proposed optimality criterion, given below in
(9), shows exactly the postulated property. It is the condi-
tional entropy of Gaussian distributed state and observation
vectors. Here the reader can notice the benefits from the
Kalman filter framework, summarized in the previous sec-
tion.

3.1. Optimal Camera Parameters

The goal is to find an optimal camera parameter setting,
i.e. the best parametera, that a priori reduces most the
uncertainty in the state estimation with respect to the ob-
servation to be made in the following. In order to find the
optimal camera parameters the important quantity to inspect
is the posterior distribution. We want to improve state es-
timation by selecting the right sensor data. After we made
an observation, we can exactly say how uncertain our state
estimate is. Uncertainty is usually measured by the entropy
H(x) = − ∫

p(x) log (p(x)) dx of a random vectorx. En-
tropy can also be measured for a certain posterior distribu-
tion, for example forp(xt|Ot,At), resulting in

H(x+
t ) = −

∫
p(xt|Ot,At) log (p(xt|Ot,At)) dxt .

This measure gives usa posteriori information about the
uncertainty, if we took actionat and observedot. Deciding
a priori about the expected uncertainty under a certain ac-
tion at is of greater interest. The expected uncertainty can
be calculated by

Hat(xt|ot) =

−
∫

p(ot|at)
∫

p(xt|Ot,At) log (p(xt|Ot,At)) dxtdot.

The quantityHat(xt|ot) is calledconditional entropyand
depends in our case on the chosen parametera t. Please note
that the notation of the conditional entropyHat(xt|ot) is
in accordance with information theory textbooks [4]. The
quantity depends on the selected parameter vectora t, since
this parameter will change the involved densitiesp(o t|at)
andp(xt|Ot,At).

Now it is straight forward to ask the most important
question for us: Which camera parameter yields the largest
reduction of uncertainty? This question is answered by min-
imizing the conditional entropy fora t. In other words, the



best camera parametera∗
t is given by

a∗
t = argmin

at

Hat(xt|ot) . (8)

Equation (8) defines the optimality criterion we have been
seeking for in the case of arbitrary distributed state vec-
tors. Unfortunately, in this general case the evaluation of
(8) is not straightforward. Therefore, in the next section we
consider a special class of distributions of the state vector,
namely Gaussian distributed state vectors. This specializa-
tion allows us to combine the approach of camera parameter
control with the Kalman filter framework and to compute
the best actiona priori.

3.2. Optimal Camera Parameters for Gaussian Dis-
tributed State Vectors

Resuming with the posterior distribution after the update
of the state estimate in (6) we get the following conditional
entropy:

Hat(xt|ot) =
∫

p(ot|at)H(x+
t )dot .

As a consequence of the linearization in the extended
Kalman filter, we know that the posterior distribution is
Gaussian distributed. From information theory textbooks
[4] we also know that the entropy of a Gaussian distributed
random vectorx ∈ IRn with x ∼ N (µ,Σ) is

H(x) =
n

2
+

1
2

log ((2π)n|Σ|) .

As a consequence, we get

Hat(xt|ot) = c +
∫

p(ot|at)
1
2

log
(|P +

t (at)|
)
dot,

with c being a constant independent ofa t. Now equation
(8) becomes

a∗
t = argmin

at

∫
p(ot|at) log

(|P +
t (at)|

)
dot . (9)

From this equation we can conclude that we have to se-
lect the parameterat that minimizes the determinant of
P +

t (at). SinceP +
t (at) is independent ofot for Gaussian

distributed state vectors (compare (7)), the optimization can
be done before the next observation is made. This was one
of the main demands stated in the beginning of this section.

The optimization criterion in (9) is only valid if, for any
chosen camera parameterat, an observation can be made in
any case. Obviously, this assumption is void, while arbitrar-
ily changing the position and/or focal length of a camera.
How to deal with this situation is considered in more detail
in the next section.

3.3. Considering Visibility

Up to now we have assumed that at each time step an
observation is made by the system to perform the state es-
timation update (6). Obviously, when changing the param-
eters of a sensor, depending on the state there is a certain a
priori probability that no observation can be made that orig-
inates from the target. This has been denoted as focal length
dilemma in the introduction. If no observation is made no
update of the state estimate by means of (6) and (7) can be
done. The resulting final state estimate for this time step
is the predicted state estimate from the previous time step,
with the corresponding predicted covariance matrix. The
state prediction (cf. (3) and (4)) results in an increase of the
covariance matrix since uncertainty is added, based on the
dynamic of the system and the noise process disturbing the
state transition process.

Tackling the focal length dilemma, the task of optimal
sensor parameter selection can now be defined by finding a
balance between the reduction of uncertainty in the state
estimate and the risk of not making an observation and
thus getting an increase of the uncertainty. Considering this
trade–off in terms of the Kalman filter state estimation, the
conditional entropy has to be rewritten as

Hat(xt|ot) =

= −
∫

{v}

p(ot|at)Hv(x+
t )dot

︸ ︷︷ ︸
target visible

−
∫

{¬v}

p(ot|at)H¬v(x−
t )dot

︸ ︷︷ ︸
target not visible

.

The first integral summarizes the entropy of the a posteriori
probability for observations that can be made in the image
(v). The probability of such observations weights the en-
tropyHv(x+

t ) of the a posteriori probability. The observa-
tions that cannot be measured in the image (¬v) result in
a Kalman filter cycle where no update of the state estimate
is done and thus only a state prediction is possible. Then,
the state prediction is treated as posterior. Again, the prob-
ability of such observations are used to weight the entropy
H¬v(x−

t ) of the a posteriori probability. In the Kalman fil-
ter case, i.e. the estimation and propagation of Gaussian
densities, the conditional entropy can further be simplified
to a weighted sum

Hat(xt|ot) = w1(a)
(

n

2
+

1
2

log
(
(2π)n|P +

t (at)|
))

+ w2(a)
(

n

2
+

1
2

log
(
(2π)n|P−

t |)) .

where the weights are given by

w1(a) =
∫

{v}

p(ot|a)dot , w2(a) =
∫

{¬v}

p(ot|a)dot .

(10)



For the minimization ofHat(xt|ot) the optimization prob-
lem is given by

a∗
t = argmin

at

[
w1(a) log

(|P +
t (at)|

)
+w2(a) log

(|P−
t |)]
(11)

One remark about the computation of the weightsw1(a)
andw2(a) = 1 − w1(a): sincep(ot|a) is Gaussian, in an
implementation the weights can be computed based on the
size of the sensor plane using the error functionerf(x) =∫ x

0
e−0.5x2

.
Currently, we assume that the update of the state estimate

is only done if all sensors observe the objects. For binocu-
lar object tracking conducted in the experiments such a 0–1
decision is sensible, since 3–D estimation based on 2D ob-
servations can only be done if the object is visible in both
cameras. For the general case ofk sensors the approach can
be easily modified. A discussion of this topic is beyond the
scope of this paper.

4. Real–time Experiments and Results

The following real–time experiments demonstrate the
practicability and the benefits of our proposed method. It
is shown that actively selecting the focal lengths increases
the accuracy of the state estimation of a dynamic system.

We performed three different experiments:

1. fixating a static object while performing controlled
movement of the binocular camera system, which is
mounted on top of a mobile platform. Instead of the
motion of the object the motion of the platform is es-
timated. The static object was located at a distance of
approx.2.7m. The platform was moving on a circle of
diameter0.6m.

2. tracking a toy train moving on a circular rail track. The
distance to the object varied between1.5m and2.0m.

3. tracking a user controlled robot dog. The distance to
the dog varied between0.7m and2.5m.

For the first two experiments we have inherently got ground
truth data in 3–D, since we know the movement of the cam-
era system (experiment 1) and the movement of the toy train
(experiment 2). Thus quantitative evaluation of the tracking
results (i.e. accuracy of 3–D estimation of the trajectory) is
possible. For that reason, we performed two runs in each ex-
periment, one with active camera control and the other with
fixed focal lengths. In the third experiment, no ground truth
data is available. With this experiment we show how the
focal length is controlled in the case of unexpected move-
ments, like sudden stops of the dog. Also, the movement of
the object was not restricted to a periodic movement on a
circular path.

4.1. Setup

For our experiments, we were using a calibrated binoc-
ular vision system (TRC Bisight/Unisight) equipped with
two computer controlled zoom cameras, which is mounted
on top of our mobile platform. In the following, tracking
is done in a purely data driven manner without an explicit
object model. Thus, at least two cameras are necessary to
estimate the state (position, velocity, and acceleration) of
the object in 3–D.

Both cameras look, slightly verging, into the same di-
rection. The baseline between them is approx.25 cm. We
calibrated the cameras at 25 discrete zoom motor positions
using Tsai’s method [12] and stored the calibration param-
eters in a lookup table. The focal lengths range from ap-
prox. 17mm to 38 mm. During tracking with zoom plan-
ning the focal lengtha is now not a continuous variable,
but the number of one of the calibration data sets from the
lookup table.

For the tracking itself, we used the region-based track-
ing algorithm proposed by Hager, et.al. [8], supplemented
by a hierarchical approach to handle larger motions of the
object between two successive frames. Given an initially
defined reference template, the algorithm recursively esti-
mates a transformation of the reference template to match
the current appearance of the tracked object in the image.
The appearance of the object might change due to motion of
the object or due to changes in the imaging parameters. The
advantage of this method is that it can directly handle scal-
ing of the object’s image region, which will appear while
zooming. The reader should notice that any other tracking
algorithm can be applied.

Finally, some remarks on the chosen state transition
function (1) and observation equation (2) are given for the
case of binoccular object tracking. The object is assumed to
move with constant acceleration. Any other motion model
is possible. For the state transition function (1) we use the
linear model of a so called constant acceleration target [2].
The state vectorxt of such a dynamic system is given by

xt = (xt, yt, zt, ẋt, ẏt, żt, ẍt, ÿt, z̈t)
T

,

with (xt, yt, zt)
T being the position of the moving object in

the world at timet. The non–linear observation equation

ot = (xL,t, yL,t, xR,t, yR,t)
T = h(xt, at)

is defined by perspective projection of the world point
(xt, yt, zt)T to the image planes of both cameras. The pa-
rameterat = (fL, fR)T summarizes the focal length of
the left and right camera. The coordinates of the moving
object in the image plane, returned by the tracking algo-
rithm, are denoted asxL,t, yL,t andxR,t, yR,t for the left



and right camera, respectively. Since the observation equa-
tion is non–linear the Jacobian has to be used in the Kalman
filter.

4.2. Experiment 1: Static Object — Moving Cam-
eras

We conducted several real–time experiments that differ
in the objects, in the backgrounds, and in the starting posi-
tions of the platform. As already mentioned, we performed
two runs for each experiment, one with fixed focal lengths
and one with active selection. In each case, the real–time
binocular visual tracking is performed non–stop, even if the
platform moves or the zoom motors are adjusted, but the
state is estimated only when the platform stops between two
successive moves. During the active tracking run and pre-
ceding each state estimation, the planning process starts and
the zoom motors are adjusted according to (11). For the
fixed case we chose the largest possible focal length that
guarantees the visibility of the object for the whole experi-
ment.

In Figure 1 images from one camera are shown taken
during one of the experiments at approx. each twelfth plan-
ning step. The images give a visual impression of the plan-
ning results. We like to stress that the change in focal length
is not driven by distance to the image border, that can easily
be seen in image 6 and 12: although the object is close to
the border of the image the estimation returns reliable ve-
locity and acceleration values that indicate a movement of
the object towards the image center.

Figure 1. Sample images from the left camera
while tracking and zooming

The quantitative evaluation of the estimation error for
the real–time experiments has been done by computing the
mean squared error between the circular path and the es-
timated position. Averaged over all experiments, the mean
squared error in the case of fixed focal lengths is206.63mm
(standard deviation:76.08mm) compared to an error of

154.93mm (standard deviation:44.17mm) while actively
selecting the optimal focal lengths. This results in a re-
duction of the error by25%. In Figure 2 the reconstructed
movement path is shown for one of the experiments, com-
paring accuracy of 3–D estimation of the passive tracking
approach with fixed focal lengths (Figure 2, left) with the
active one (Figure 2, right).
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Figure 2. Visualization of real–time tracking
estimation error. The inner circles represent
the ground truth motion paths of the mobile
platform. The outer curves show the esti-
mated motion paths for fixed focal lengths
(left) and for active zoom planning (right).

4.3. Experiment 2: Moving Toy Train — Static
Camera

In the second experiment a moving toy train was tracked.
For each experiment two runs have been executed: one with
fixed focal lengths, one with actively changing the focal
lengths according to our criterion. The focal lengths for the
fixed case was selected in a way that the cameras could see
the object during the whole movement on the circular track.

During the active tracking run every 5th image a new
focal length is set. In Table 1 quantitative results for the
estimation of the 3–D trajectory of the object are given. The
results show that actively controlling the focal length during
tracking reduces the estimation error in 3–D as well as the
standard deviation of the error. In total, the reduction of the
estimation error is up to 42%. In the average, the error is
still reduced by 36%. We achieve a framerate of approx. 17
fps for both video streams and active focal length selection
on an Athlon 1GHz processor. This shows that the approach
can be utilized in real world applications. When we store
the recorded images on disc during tracking, the framerate
drops to 11–15 frames per second.

4.4. Experiment 3: Moving Robot Dog

The third experiment differs slightly from the previous
two. In addition to the focal length control, the object has
been fixated by the cameras during tracking using a PID



passive active
µ σ µ σ

min 44.0591 21.4068 28.2702 15.1301
max 48.9534 26.5424 32.4285 18.7227
mean 47.1964 25.4800 30.1614 17.28083

Table 1. Estimation error of the 3–D trajec-
tory of the moving object: passive vs. active
approach. The best result (min), the worst
result (max), and the result averaged over all
experiments (mean) are given. Shown are the
mean Euclidean estimation error in 3–D ( µ)
and the standard deviation ( σ) per time step
between the estimated movement and ground
truth data (in mm). The distance to the mov-
ing object varied between 2.0m and 2.6m.

controller. Fixation is done by setting the tilt axis of the
stereo camera system and the vergence axes of the two cam-
eras in a way that the object is kept in the center of the im-
age.

The image sequence in Figure 3 demonstrates the ex-
pected behavior of an active focal length control. At first,
while the object stands still the cameras zoom toward it (first
image in Figure 3). Once the dogs starts moving backward
(to the right in the image) the focal length is decreased in
accordance with the remaining uncertainty in the state es-
timation (next four images). The dog stops again and the
focal length thus is increased (images 6 and 7). Finally, the
dog starts moving forward. As before the focal length is de-
creased (image 8). The process of focal length control can
also be seen in Figure 5 (time steps between 5 and 30).

Figure 3. Sample images from the right cam-
era while tracking and zooming. Every 50th
frame of the recorded image sequence is
shown. The distance is approx. 2.5m.1

The influence of the uncertainty in the 3–D estimation

1Movies can be downloaded from http://www5.informatik.uni-
erlangen.de/MEDIA/denzler/ICCV03

Figure 4. Sample images from the right cam-
era while actively tracking the approaching
dog. Every 50th frame is shown. The dis-
tance to the object is between 120cm (first
images) and 70cm (last images).

on the selected focal length can best be shown in Figure 4.
The dog moves backwards and approaches the camera. Due
to the constant movement, estimation is quite certain result-
ing in a large focal length. In image 6 the dog stops for
a second and starts moving again to the right. This unex-
pected behavior causes the system to reduce the focal length
quickly to the minimum value over the next 200 frames (ap-
prox. 7sec). Then the dog stops and the focal length can be
increased for detailed inspection. The selected focal length
can again be seen in Figure 5 for both cameras (time steps
50–85).

4.5. Summary

In three different experiments we have shown that ob-
ject tracking will gain from the theoretically well founded
approach for active focal length control. First, the 3–D es-
timation error is reduced in a significant way. Second, as
a consequence of the criterion, the images are taken at the
highest resolution possible. One important consequence of
this property is that subsequent processing steps are pro-
vided always with most information about the moving tar-
get. Finally, the approach works in real time, which is one
important demand for real world applications.

5. Conclusions and Future Work

In this paper we have presented an original approach on
how to select the right focal length of two cameras in or-
der to improve state estimation during object tracking. This
problem has not been tackled before in the literature. The
theoretically well founded criterion can be formulated for
the general case ofk sensors; it is not restricted to focal
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Figure 5. Plot of the focal length for the left
and right camera during active tracking. The
x–axis corresponds to the time steps (one
time step corresponds to 200msec). The y–
axis indicates motor positions for the focal
length control (corresponds to a focal length
between 17mm (value 0) and 38mm (value
25000).

length control only. For Gaussian distributed state vectors,
a metric in closed form has been derived, which can be eval-
uated a priori and which can be optimized in real–time. We
also showed how the whole approach fits into the Kalman
filter framework and how to deal with the problem of visi-
bility depending on the selected sensor parameters.

The approach has been verified and tested in real–time
experiments for binocular object tracking. Active focal
length control yields an improvement of up to 42% in the
estimation error, compared to tracking, for which the focal
length has been set constant. The whole approach runs at a
framerate of approximately 17 fps on an Athlon 1GHz pro-
cessor.

Besides the improvement in estimation, the approach is
applicable beyond pure tracking tasks. Since the largest fo-
cal length with respect to the uncertainty is set, the images
of the object have always the highest possible resolution in
the current situation. Thus, continuative processing steps
like object recognition will also gain from an active track-
ing strategy. In current work we investigate such combina-
tions (tracking and recognition). Additionally, we work on
integrating the uncertainty in the recognition process in the
whole framework. The goal is to set the focal length not
only based on the uncertainty in the estimation of the 3–D
position of the moving object, but also based on the uncer-
tainty in the recognition process.

Another point of interest is to apply the idea of infor-
mation theoretic sensor data selection to the non–Gaussian
case, which will become important if occlusions shall be

handled by the tracking approach. This makes it necessary
to use particle filters for state estimation and to optimize the
criterion (11) for particle sets.
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