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ABSTRACT

The accurate estimation of carbon and heat fluxes at global
scale is paramount for future policy decisions in the context
of global climate change. This paper analyzes the relative rel-
evance of potential remote sensing and meteorological drivers
of global carbon and energy fluxes over land. The study is
done in an indirect way via upscaling both Gross Primary
Production (GPP) and latent energy (LE) using Gaussian
Process regression (GPR). In summary, GPR is successfully
compared to multivariate linear regression (RMSE gain of
+4.17% in GPP and +7.63% in LE) and kernel ridge regres-
sion (+2.91% in GPP and +3.07% in LE). The best GP models
are then studied in terms of explanatory power based on the
analysis of the lengthscales of the anisotropic covariance
function, sensitivity maps of the predictive mean, and the ro-
bustness to distortions in the input variables. It is concluded
that GPP is predominantly mediated by several vegetation in-
dices and land surface temperature (LST), while LE is mostly
driven by LST, global radiation and vegetation indices.

Index Terms— Gaussian process, regression, feature
ranking, GPP, carbon, energy, global monitoring

1. INTRODUCTION

Estimating biosphere-atmosphere fluxes at continental to
global scale based on FLUXNET1 along with remote sens-
ing and meteorological data has become an emerging and
very promising field of active research. In the last decade,
global spatial-temporal fields of FLUXNET-derived carbon
and energy fluxes are increasingly used for analyzing varia-
tions of the global carbon and energy cycles, and to evaluate
global land surface models. Model/process-based and data-
driven algorithms are the two main approaches to upscale
data acquired from flux towers [1, 2]. In the last few years,
nevertheless, data-driven statistical learning algorithms have
attained outstanding results in the estimation of climate vari-
ables and related bio-geo-physical parameters at local and
global scales [3]. These algorithms avoid complicated as-
sumptions and provide flexible nonparametric models that fit
the observations using massive heterogeneous data. Current
operational vegetation products, like leaf area index (LAI),

This paper has been partially supported by the Spanish Ministry of Econ-
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1http://www.fluxdata.org

are typically produced with neural networks, Gross Primary
Production (GPP) –as the largest global CO2 flux driving
several ecosystem functions– is estimated using ensembles of
random forests and neural networks [1,2,4], biomass has been
estimated with stepwise multiple regression [5], support vec-
tor regression [6] showed high efficiency in modelling LAI,
fCOVER and evapotranspiration [7], and kernel methods in
general [8,9] and Gaussian Processes (GPs) in particular [10]
recently provided excellent results in chlorophyll content
estimation [11–13].

In this work, we focus on the properties of GPs to tackle
the problem of carbon and energy fluxes modeling. Gaussian
processes are used here: 1) to estimate global flux products
derived from upscaling FLUXNET eddy covariance observa-
tions; and more importantly, 2) to assess the relative relevance
of the used explanatory remote sensing and meteorological
variables. In particular, we will focus on key carbon and en-
ergy fluxes only. We evaluate three different techniques to
unveil the knowledge learned by the GP models, rooted on
either permutation, sensitivity or automatic relevance deter-
mination priors.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the theory underlying GP regression (GPR)
and the techniques used to infer feature rankings from trained
GPR models. Section 3 details the data used in this paper.
Section 4 gives the experimental results. Finally, Section 5
concludes the paper and outlines the further work.

2. RANKING DRIVERS WITH GP MODELS

2.1. Gaussian Process Regression (GPR)

Standard regression approximates observations (often re-
ferred to as outputs) {yn}Nn=1 as the sum of some unknown la-
tent function f(x) of the inputs {xn ∈ RD}Nn=1 plus constant
power Gaussian noise, i.e. yn = f(xn)+εn, εn ∼ N (0, σ2

n).
Instead of proposing a parametric form for f(x) and learning
its parameters in order to fit observed data well, GP regres-
sion (GPR) proceeds in a Bayesian, non-parametric way. A
zero mean2 GP prior is placed on the latent function f(x)
and a Gaussian prior is used for each latent noise term εn,
f(x) ∼ GP(0, kθ(x,x′)), where kθ(x,x′) is a covariance
function parameterized by θ, and σ2

n is a hyperparameter that

2It is customary to subtract the sample mean to data {yn}Nn=1, and then
to assume a zero mean model.
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specifies the noise power. Essentially, a Gaussian process is a
stochastic process whose marginals are distributed as a multi-
variate Gaussian. In particular, given the priors GP , samples
drawn from f(x) at the set of locations {xn}Nn=1 follow a
joint multivariate Gaussian with zero mean and covariance
matrix Kff with [Kff ]ij = kθ(xi,xj), which is parametrized
by a set of hyperparameters θ. GPR is intimately related
to standard kriging in geostatistics: x is an arbitrary fea-
ture vector rather than just the geographical coordinates of a
sample.

If we consider a test example x∗ with corresponding out-
put value y∗, the GP defines a joint prior distribution between
the observations y ≡ {yn}Nn=1 and y∗. Collecting a training
data set in D ≡ {xn, yn|n = 1, . . . N}, it is possible to ana-
lytically compute the posterior distribution over the unknown
output y∗:

p(y∗|x∗,D) = N (y∗|µGP∗, σ
2
GP∗)

µGP∗ = k>f∗(Kff + σ2
nIn)

−1y = k>f∗α

σ2
GP∗ = σ2

n + k∗∗ − k>f∗(Kff + σ2
nIn)

−1kf∗,

where kf∗ is a vector of similarities between the test point and
all training points.

GPs offer some advantages over other regression meth-
ods. Since they yield a full posterior predictive distribu-
tion over y∗, it is possible to obtain not only mean predic-
tions for test data, µGP∗, but also the so-called “error-bars”,
σ2

GP∗, assessing the uncertainty of the mean prediction. The
whole procedure only depends on a very small set of hyper-
parameters θ, which combats overfitting efficiently. Also,
inference of the hyper-parameters and the weights α can be
performed using continuous optimization of the evidence so
there is no need to resort to cross-validation procedures. Note,
however, that the bottleneck of the algorithm is the definition
of the covariance (kernel or Gram) function kθ: this function
should capture the similarity between data instances. A stan-
dard, widely used covariance function is the isotropic squared
exponential (SE), k(xi,xj) = exp(−‖xi − xj‖2/(2σ2)).

2.2. GPR for feature ranking

In this work, we report results following three different ways
to rank the input drivers (features, explanatory variables) used
by the GPR models. While rooted in different principles, all
of them evaluate how robust is the fitted model to distortions
or information content of the features.

2.2.1. Permutation analysis

The first approach is simple and general for any regression al-
gorithm, and basically consists of a greedy algorithm in which
the impact of the inputs on the prediction error is evaluated in
the context or absence of the other predictors. Essentially, for
each feature j, the algorithm permutes its values for all train-
ing samples, and evaluates the prediction RMSE. The pro-
cess is repeated for a number of permutations, p = 1, . . . , np,
and results are averaged. The relevance of feature j is rj =
1/( 1

np

∑
pRMSE(p, j)). In [12, 13], we illustrated the useful-

ness of this procedure for the identification of the most rele-
vant spectral channels for the retrieval of vegetation parame-

ters (chlorophyll content, LAI and FVC) from hyperspectral
data.

2.2.2. Anisotropic Gaussian kernel

An interesting possibility to evaluate the relative relevance
of the inputs identified by a trained GP is to resort to an
anisotropic Gaussian covariance function, as an alternative
generalization of the isotropic SE prior. The so-called au-
tomatic relevance determination (ARD) prior takes the form

k(xp,xq) = ν2 exp

(
−

D∑

j=1

(xjp − xjq)
2

2σ2
j

)
,

where xjp is the feature j of input vector xp, σj contains a
lengthscale per dimension, and ν is a positive scale factor.
ARD effectively prunes input feature j for large values of σj .
Therefore, the relevance of feature j is thus directly given by
the inverse of the infered lengthscale, σj . In our previous
works [12, 14], ARD was used to assess the relevance of the
D spectral channels in vegetation chlorophyll content estima-
tion.

2.2.3. Sensitivity analysis over the GP

In this work we exploit the sensitivity analysis over the pre-
dictive mean of the GP model, µGP∗. Sensitivity of feature j
is here defined as sj =

∫
(∂φ(x)∂xj

)2p(x)dx, where p(x) is the
probability density function over the input x, and φ(x) repre-
sents the predictive mean, µGP∗. Intuitively, the objective of
the sensitivity map is to measure the changes of the derivative
of the function φ(x) in the jth direction. In order to avoid
the possibility of cancellation of the terms due to its signs, the
derivatives are squared. Therefore, the resulting sensitivity
map will be positive sj ≥ 0 for all features. The empirical
estimate of the sensitivity for the jth feature can be written as
sj = 1

N

∑N
n=1(

∂φ(xn)
∂xj

)2. It is easy to show that the result-
ing empirical estimate of the GP mean sensitivity map for the
ARD prior is:

sj =
ν2

N

N∑

q=1

( N∑

p=1

αp(x
j
p − xjq)k(xp,xq)/σ

2
j

)2

. (1)

Note that sj is computed in closed-form using only training
points and the inferred weight vector α.

3. DATA COLLECTION AND PREPROCESSING

In this work, we exploit two complementary sets of products
with enhanced spatial and temporal resolution in comparison
to existing products [2]: a 5 min spatially and 8 day tempo-
rally resolved product driven solely by remote sensing based
variables, and a daily and vegetation type specific product at
0.5o driven by meteo and mean seasonal cycle remote sensing
based variables.

We used the global La Thuile FLUXNET synthesis data
set1 which is composed of half-hourly FLUXNET eddy co-
variance measurements processed using standardized proce-



dures of gap-filling and quality control [15, 16]. The fluxes
were subsequently aggregated into 8-daily means to conform
to the temporal resolution of MODIS products. We excluded
data where more than 20% of the data of the monthly mean
was based on gap filling with low confidence [17], and applied
additional semi-automated screening for bad quality data. Es-
timates of GPP were based on the flux partitioning method
in [17].

We collected and processed MODIS land data at the lo-
cations of the flux towers: MOD11A2 Land Surface Tem-
perature (LST) [18], MOD13A2 Vegetation Index (VI)
[19], MOD15A2 Leaf Area Index and FPAR (LAI/FPAR)
[20], and MCD43A2 and MCD43B4 BRDF-corrected sur-
face reflectances [21]. Two vegetation index, LSWI and
NDWI, were created further using BRDF-corrected surface
reflectance data. Additional variables were created as the
product of vegetation indices and LST, or global radiation
(Rg). We used the data from 3 by 3 km regions centered
on the flux towers and applied QA/QC to screen bad quality
data. Details are given in Table 1.

Table 1: Remote sensing products used to derive the drivers.

Scale Parameter Product Spatial Res. Temp. Res. Ref.
Site LST MOD11A2 1km 8 day [18]

VI MOD13Q1 250m 16 day [19]
LAI/FPAR MOD15A2 1km 8 day [20]
Reflectance MCD43A2 500m 8 day [21]
Reflectance MCD43A4 500m 8 day [21]

Global LST MOD11A2 1km 8 day [18]
VI MOD13A2 1km 16 day [19]
LAI/FPAR MOD15A2 1km 8 day [20]
Reflectance MCD43B4 1km 8 day [21]
Solar Rad JAXA /JASMES 5km 1 day [22]

A suite of additional explanatory variables was derived
by computing the mean seasonal cycle (MSC) and metrics
thereof like minimum, maximum, and mean for all ‘raw’ vari-
ables, which yielded a total set of 216 potentially explanatory
variables. The feature selection algorithm presented in [23]
was used to identify suitable feature subsets for carbon and
energy fluxes respectively. We here focus on the best eight
features, D = 8: For GPP we used Normalized Difference
Water Index (NDWI), Land Surface Temperature during day
(LST-Day) and night (LST-Night), the maximum of the LST
mean seasonal cycle (MSC-Day), NDVI times the global radi-
ation (Rg) map, Enhanced Vegetation Index (EVI), medium-
infrared (MIR) region, and the leaf area index (LAI). For LE,
the input features were EVI×LST-Day, the MSC of the Frac-
tion of Photosynthetically Active Radiation (fAPAR) × Rg,
EVI×LST, LST-Day and LST-Night, Rg, along with the po-
tential radiation (Rg-Pot) and its minimum MSC (Rg-MSC-
Min). All these features are then used to fit machine learn-
ing models of relevant carbon and energy fluxes, such as the
Gross Primary Production (GPP) and latent energy (LE).

4. EXPERIMENTAL RESULTS

This section shows the numerical results obtained on the GPP
and LE modeling, and evaluates the three techniques for rank-
ing drivers of global carbon and energy fluxes over land.

4.1. Experimental setup

In this work we compare numerically five regression algo-
rithms: a multivariate linear regression (LR), multilayer per-
ceptron neural network (MLP) [4], support vector regression
(SVR) [6], the kernel ridge regression (KRR) [8], and the
standard Gaussian process regression (GPR) [10]. We split
the available data (N = 19797 points) into 10 independent
folds, and show the 10-fold cross-validation results. A one-
hidden layer MLP was trained with the Levenberg-Marquardt
algorithm to minimize the squared loss. Both SVR and KRR
used the SE kernel and employed 2/3 of the training data in
each fold for training and 1/3 for validation. GPR used the
ARD prior covariance and hyperparameters θ were selected
by maximizing the marginal likelihood of the observations.
The ARD kernel endorses some more flexibility in the mod-
eling and allows to study the inferred lengthscale for feature
ranking. The MATLAB simpleR toolbox3 was used to fit the
models.

4.2. Numerical comparison

Table 2 shows the obtained cross-validation results in terms
of bias (mean error, ME), accuracy (RMSE, MAE), and
goodness-of-fit (Pearson’s correlation coefficient ρ). It can be
noticed that GP models perform better that the rest in RMSE,
MAE and ρ, while they provide slightly higher bias for GPP.
In summary, GPR is successfully compared to multivariate
LR in RMSE terms (gain of +4.17% in GPP and +7.63% in
LE), as well as nonlinear models (maximum gain of +2.91%
in GPP and +3.07% in LE). GPR reveals similar accuracy
results to KRR, yet less biased for the latent energy flux. In
addition, as we will study in the next section, GPR allows to
derive feature ranking under solid Bayesian foundations.

Table 2: Numerical results for GPP and LE and all methods.

GPP ME RMSE MAE ρ

LR -0.01 1.83 1.30 0.78
MLP [4] +0.04 1.92 1.39 0.73
SVR [6] +0.01 1.80 1.23 0.78
KRR [8] +0.00 1.81 1.24 0.78
GPR [10] +0.03 1.76 1.16 0.80
LE ME RMSE MAE ρ

LR -0.00 1.70 1.26 0.79
MLP [4] +0.14 1.68 1.25 0.80
SVR [6] +0.01 1.55 1.11 0.83
KRR [8] +0.12 1.53 1.10 0.84
GPR [10] -0.01 1.52 1.06 0.84

3http://www.uv.es/gcamps/code/simpleR.html
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Fig. 1: Normalized feature rankings (mean±std.dev.) using LR and GPR models for GPP (top) and LE (bottom).

4.3. Ranking features

Figure 1 shows four feature rankings: the permutation analy-
sis of both LR and GPR using np = 100, sensitivity analysis
of GP predictive mean function, and the lengthscales for the
best GP models. Several conclusions can be derived: First,
LR and GPR lead to somewhat similar results in the permu-
tation analysis: both assign high relevance to the NDVI for
modeling GPP and EVI-LST-MSC for modeling LE. Actu-
ally, vegetation indices and LST were found to be informative
for GPP and LE modelling in several previous studies. Sec-
ond, unlike LR, GPR assigns a very high relevance to NDWI
for GPP, as well as higher relevance to LST-Day and lower
relevance to Rg for LE estimation. These might be due to
the expected non-linear relationship between moisture avail-
ability and GPP, and between LST and LE, respectively. Fi-
nally, note that the permutation ranking and the analysis of
lengthscales report similar results for GPs, while the sensi-
tivity analysis typically identifies very few features as rele-
vant: NDWI for GPP modeling, while LST-Day and EVI-
LST-MSC for LE modeling.

5. CONCLUSIONS

This paper summarized some of our on-going activities to
provide high quality global maps for carbon and energy
fluxes. In particular, we introduced Gaussian processes as a
flexible nonparametric algorithm for parameter retrieval and
upscaling. GPs are here exploited to provide high accuracy
estimates and feature rankings in different levels of sophis-
tication. It was shown that GP models outperformed linear
regression and kernel ridge regression for GPP and LE mod-
eling. In addition, three techniques for model analysis were
studied to reveal some knowledge about trained GP models.
The most relevant drivers according to GP were several veg-
etation indices and land surface temperature (LST) for GPP
modeling, while LE is mostly driven by LST, global radiation
and vegetation indices. Further work will consider bigger sets
of features, and modern techniques for visualization of the
feature maps.
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