arXiv:2402.08439v1 [cs.CV] 13 Feb 2024

JEFAPATO - A JOINT TOOLBOX FOR BLINKING ANALYSIS AND
FACIAL FEATURES EXTRACTION

A PREPRINT - SUBMITTED TO THE JOURNAL OF OPEN SOURCE SOFTWARE

Tim Biichner*,|® Oliver Mothes'|,|» Orlando Guntinas-Lichius*?, and |® Jochim Denzler®'
'Computer Vision Group, Friedrich Schiller University Jena, 07743 Jena, Germany
?Department of Otorhinolaryngology, Jena University Hospital, 07747 Jena, Germany

January 18, 2024

Keywords Python, Blinking, Facial Analysis, Blend Shapes, Facial Expressions

1 Summary

Analyzing facial features and expressions is a complex task in computer vision. The human face is intricate, with
significant shape, texture, and appearance variations. In medical contexts, facial structures that differ from the norm,
such as those affected by paralysis, are particularly important to study and require precise analysis. One area of interest
is the subtle movements involved in blinking, a process that is not yet fully understood and needs high-resolution,
time-specific analysis for detailed understanding. However, a significant challenge is that many advanced computer
vision techniques demand programming skills, making them less accessible to medical professionals who may not have
these skills. The Jena Facial Palsy Toolbox (JeFaPaTo) has been developed to bridge this gap. It utilizes cutting-edge
computer vision algorithms and offers a user-friendly interface for those without programming expertise. This toolbox
is designed to make advanced facial analysis more accessible to medical experts, simplifying integration into their
workflow.

The state of the eye closure is of high interest to medical experts, e.g., in the context of facial palsy or Parkinson’s
disease. Due to facial nerve damage, the eye-closing process might be impaired and could lead to many undesirable side
effects. Hence, more than a simple distinction between open and closed eyes is required for a detailed analysis. Factors
such as duration, synchronicity, velocity, complete closure, the time between blinks, and frequency over time are highly
relevant. Such detailed analysis could help medical experts better understand the blinking process, its deviations, and
possible treatments for better eye care.

2 Statement of need

To analyze the blinking behavior in detail, medical experts often use high-speed cameras to record the blinking process.
Therefore, experiments record videos with 240 FPS or higher, which results in large amounts of data and requires
optimized algorithms for consumer hardware. JeFaPoTo is a Python-based [[Van Rossum and Drake} 2009] program to
support medical and psychological experts in analyzing blinking and facial features for high temporal resolution video
data. The tool splits into two main parts: An extendable programming interface and a graphical user interface (GUI)
entirely written in Python. The programming interface enables efficient processing of temporal resolution video data,
automatically extracts selected facial features, and provides a set of analysis functions specialized for blinking analysis.
The GUI offers non-programmers an intuitive way to use the analysis functions, visualize the results, and export the
data for further analysis. JeFaPoTo is designed to be extendable by additional analysis functions and facial features

“tim.buechner@uni-jena.de

Toliver .mothes@uni-jena.de

igunt inas.lichius@med.uni-jena.de
§j oachim.denzler@uni-jena.de

https://orcid.org/000-0002-6879-552X
https://orcid.org/0000-0002-2294-3670
https://orcid.org/0000-0001-9671-0784
https://orcid.org/0000-0002-3193-3300

JeFaPaTo A PREPRINT

N
©

Blinks per
minute

o

Histogram

.
L]
0 +30
L] L] L]
“ . . .
x . . (] . . o e +20 5
F 20 . D) . ° . . . £
~ (1] | o o o g L I e e 0 @ eoo ne 40 £
® 0 e 0 . m o0 o oo ° 0 e oo =
= /\‘ e @ o f\: oo I’k o ;o cagle o o\ o K -}\ I]
£ 351ms ” PR o olae e WAV w3\ P\ T . - mean £
2 0 o e o pe eefe /- M o e o @ o ®aW {{“ o = M
2 e o » o0 ™ . Y .) s
o =T AT . e T T Lo T oy Y Y T L e 0
& . ° ° e - e o LX) 5
o L 3 e 0 . L] "
v —20) o T I | Ll . 20 =
E . o . K
F — Rolling Avg [5] . 3o
Rolling Std [5] |
~40 Upper
Lower

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 0 50 100
Time [min]

Figure 1: The plot presents a visual summary of blinking patterns captured over 20 minutes, recorded at 240 frames
per second (FPS). It illustrates the temporal variation in paired blinks, quantifies the blink rate as blinks per minute, and
characterizes the distribution of the time discrepancy between left and right eye closures.

and is under joint development by computer vision and medical experts to ensure high usability and relevance for the
target group.

JeFaPoTo leverages the mediapipe library [Lugaresi et al.l 2019, |Kartynnik et al.l 2019] to extract facial landmarks
and blend shape features from video data at 60 FPS (on modern hardware). With the landmarks, we compute the
‘EAR‘ (Eye-Aspect-Ratio) [Soukupova, |2016| for both eyes over the videos. Additionally, JeFaPaTo detects blinks,
matches left and right eye, and computes medically relevant statistics, a visual summary for the provided video, shown
in and exports the data in various formats for further independent analysis. The visual summary lets medical
experts quickly get an overview of the blinking behavior. As shown in[section 2] the blinks per minute are shown as a
histogram over time in the upper axis, and the delay between blinks is shown in the right axis. The main plot comprises
the scatter plot of the ‘EAR‘ score for the left and right eye, and the dots indicate the detected blinks, with the rolling
mean and standard deviation shown as a line plot. This summary enables a quick individualized analysis for each video,
thus also patients, and can be included in medical reports.

We leverage PyQt6 [Riverbank Computing Limited, [2023||The Qt Componany} |2023]] and pyqtgraph [Campagnolal
2020] to provide a GUI on any platform for easy usage. To support and simplify the usage of JeFaPaTo, we provide a
standalone executable for Windows, Linux, and MacOS. JeFaPaTo is currently used in three medical studies to analyze
the blinking process of healthy probands and patients with facial palsy and Parkinson’s disease.

3 Functionality and Usage

JeFaPaTo was developed to support medical experts in extracting, analyzing, and studying blinking behavior. Hence,
the correct localization of facial landmarks is of high importance and the first step in the analysis process of each frame.
Once a user provides a video in the GUI, the tool performs an automatic face detection, and the user can adapt the
bounding box if necessary. Due to the usage of mediapipe [Lugaresi et al., 2019, [Kartynnik et al.|[2019]], the tool can
extract 468 facial landmarks and 52 blend shape features. To describe the state of the eye, we use the Eye-Aspect-Ratio
(EAR) [Soukupoval 2016], a standard measure for blinking behavior computed based on the 2D coordinates of the
landmarks. The ratio ranges between 0 and 1, where O indicates a fully closed eye and higher values indicate an open
eye, whereas most people have an EAR score between 0.2 and 0.4. This measure describes the ratio between the vertical
and horizontal distance between the landmarks, resulting in a detailed motion approximation of the upper and lower
eyelids. Please note that all connotations for the left and right eye are based on the subject’s viewing perspective.

We denote this measure as EAR-2D-6, and the six facial landmarks are selected for both eyes, as shown in
They are computed for each frame without any temporal smoothing. As mediapipe [Lugaresi et al., 2019} Kartynnik]
et al.|[2019] belongs to the monocular depth reconstruction approaches for faces, each landmark contains an estimated
depth value. We offer the EAR-3D-6 feature as an alternative, computed from 3D coordinates of the landmarks, to
leverage this information to minimize the influence of head rotation. However, the first experiments indicated that the
2D approach is sufficient to analyze blinking behavior.

JeFaPaTo A PREPRINT

Figure 2: Visualization of the Eye-Aspect-Ratio for the left (blue) and right (red) eye inside the face.

JeFaPaTo optimizes io-read by utilizing several queues for loading and processing the video, assuring adequate RAM
usage. The processing pipeline extracts the landmarks and facial features, such as the ‘EAR* score for each frame, and
includes a validity check ensuring that the eyes have been visible. On completion, all values are stored in a CSV file for
either external tools or for further processing JeFaPaTo to obtain insights into the blinking behavior of a person, shown
in[section 2} The blinking detection and extraction employ the scipy.signal.find_peaks algorithm [Virtanen et al. |
[2020], and the time series can be smoothed if necessary. We automatically match the left and right eye blinks based
on the time of apex closure. Additionally, we use the prominence of the blink to distinguish between ‘complete‘ and
‘partial* blinks based on a user-provided threshold (for each eye) or an automatic threshold computed using Otsu’s
method [1979]]. The automatic threshold detection uses all extracted blinks for each eye individually. Considering
the personalized nature of blinking behavior, a graphical user interface (GUI) is provided, enabling experts to adjust the
estimated blinking state as needed manually. Additional functions are included in calculating blinking statistics: the
blink rate (blinks per minute), the mean and standard deviation of the Eye Aspect Ratio (EAR) score, the inter-blink
delay, and the blink amplitude. A graphical user interface (GUI) for the JeFaPaTo codebase is provided, as depicted in
to facilitate usage by individuals with limited programming expertise and to streamline data processing.

In we show the blinking analysis graphical user interface composed of four main areas. We give a short
overview of the functionality of each area to provide a better understanding of the tool’s capabilities. The A-Area is the
visualization of the selected EAR time series for the left (drawn as a blue line) and right eye (drawn as a red line) over
time. Additionally, after successful blinking detection and extraction, the detected ‘complete* blinks (pupil not visible)
are shown as dots, and ‘partial‘ blinks (pupil visible) as triangles. If the user selects a blink in the table in the B-Area,
the graph automatically highlights and zooms into the according area to allow a detailed analysis.

B e e, o w w o
bl TS priance PO poslign otk e | aomFimacy

TTT T T T

Figure 3: The graphical user interface (GUI) designed for blinking analysis utilizes the Eye Aspect Ratio (EAR) metric.
This interface comprises four primary components

The B-Area contains the main table for the blinking extraction results, and the user can select the according blink to
visualize the according period in the EAR plot. The table contains the main properties of the blink: the EAR score
at the blink apex, the prominence of the blink, the internal width in frames, the blink height, and the automatically
detected blinking state (none, partial, complete). If the user provides the original video, the user can drag and drop
the video into the GUI into the D-Area, and the video will jump to the according frame to manually correct the blinking

JeFaPaTo A PREPRINT

Table 1: Medical relevant statistics extracted by JeFaPaTo for blinking analysis.
Statistic Description Unit/Range
EAR_Before_Blink_left_avg The average left eye EAR score three seconds before the first blink 0,1
EAR_Before_Blink_right_avg The average right eye EAR score three seconds before the first blink 0,1
EAR_left_min The minimum left eye EAR score of the time series 0,1
EAR _right_min The minimum right eye EAR score of the time series 0,1
EAR_left_max The maximum left eye EAR score of the time series 0,1
EAR _right_max The maximum right eye EAR score of the time series 0,1
Partial_Blink_threshold_left The threshold to distinguish ‘partial‘ or ‘complete’ state 0,1
Partial_Blink_threshold_right The threshold to distinguish ‘partial‘ or ‘complete® state 0,1
Prominence_min The minimum prominence value of all blinks (left and right eye) 0,1
Prominence_max The maximum prominence value of all blinks (left and right eye) 0,1
Prominence_avg The average prominence value of all blinks (left and right eye) 0,1
Width_min The minimum width value of all blinks (left and right eye) 0,1
Width_max The maximum width value of all blinks (left and right eye) 0,1
Width_avg The average width value of all blinks (left and right eye) 0,1
Height_min The minimum height value of all blinks (left and right eye) 0,1
Height_max The maximum height value of all blinks (left and right eye) 0,1
Height_avg The average height value of all blinks (left and right eye) 0,1
Partial_Blink_Total_left The amount of ‘partial® blinks for the left eye N
Partial_Blink_Total_right The amount of ‘partial blinks for the right eye N
Partial_Frequency_left_bpm The frequency per minute of ‘partial‘ left blinks through out the video ml.”
Partial_Frequency_right_bpm The frequency per minute of ‘partial‘ right blinks through out the video mfm
Blink_Length_left_ms_avg The mean value of the blink length of the left eye ms
Blink_Length_left_ms_std The standard deviation value of the blink length of the left eye ms
Blink_Length_right_ms_avg The mean value of the blink length of the right eye ms
Blink_Length_right_ms_std The standard deviation value of the blink length of right left eye ms
Partial_Blinks_min[NN]_left The amount of ‘partial‘ blinks in the left eye during minute N N of the video N
Partial_Blinks_min[NN]_right The amount of ‘partial® blinks in the right eye during minute NN of the video N
Complete_Blink_Total_left The amount of ‘complete® blinks in the left eye during minute N N of the video N
Complete_Blink_Total_right The amount of ‘complete® blinks in the right eye during minute NN of the video N
Complete_Frequency_left bpm The frequency per minute of ‘complete® left blinks through out the video ml.n
Complete_Frequency_right bpm The frequency per minute of ‘complete’ right blinks through out the video mlzn
Complete_Blinks_min[NN]_left = The amount of ‘complete* blinks in the left eye during minute NN of the video N
Complete_Blinks_min[NN]_left = The amount of ‘complete® blinks in the right eye during minute N N of the video N

state. The content of the table is used to compute the blinking statistics and the visual summary. These statistics are
also shown in the B-Area at different tabs, and the user can export the data as a CSV or Excel file for further analysis.

The C-Area is the control area, where the user can load the extracted EAR scores from a file and select the corresponding
columns for the left and right eye (an automatic pre-selection is done). The user can choose the parameters for the
blinking extraction, such as the minimum prominence, distance between blinks, and the minimum blink width.
Additionally, users can define the decision threshold for estimating ’partial’ blinks should the ’auto’ mode prove
inadequate. Upon data extraction, corrections to the blinking state can be made directly within the table, following
which the computation of blinking statistics and the generation of the visual summary can be initiated.

The D-Area displays the current video frame, given that the user supplies the original video. While this feature is
optional, it helps manually correct the blinking state when required.

4 Extracted Medical Relevant Statistics

We provided a set of relevant statistics for medical analysis of blinking behavior, which are valuable to healthcare
experts, see [Table 1| The JeFaPaTo software is being developed in partnership with medical professionals to guarantee
the included statistics are relevant. Future updates may incorporate new statistics based on medical expert feedback.
A sample score file is available in the ‘examples/* directory within the repository, enabling users to evaluate the
functionality of JeFaPaTo without recording a video.

JeFaPaTo A PREPRINT

S Platform Support

As JeFaPaTo is written in Python, it can be used on any platform that supports Python and the underlying libraries. We
recommend the usage of anaconda [Janal |2020] to create encapsulated Python environments to reduce the interference
of already installed libraries and possible version mismatches. The script dev_init.sh automatically creates the
custom environment with all dependencies with the main. py as the entry point for running the JeFaPaTo. The user can
also use the ‘requirements.txt* file to install the dependencies manually, even though we recommend creating a virtual
environment at the very least. As JeFaPaTo is designed to be used by medical experts, we provide a graphical user inter-
face (GUI) to simplify usage during clinical studies and routine analysis. We give each release a standalone executable
for Windows 11, Linux (Ubuntu 22.04), and Mac0S (version 13+ for Apple Silicon and Intel). We
offer a separate branch for MacO0S version pre-13 (Intel), which does not contain blend shape extraction, to support older
hardware. The authors and medical partners conduct all user interface and experience tests on Windows 11 and Mac0S
13+ (Apple Silicon).

5.1 Libraries

We list the main libraries used in JeFaPaTo and their version used for the development.

Library Version Category Usage

numpy >=1.19 Processing Image matrices and time series
opencv-python-headless >=4.5 Processing Image processing

protobuf >=3.11,<4 Processing Loading of precomputed models

psutil =5.8 Processing Computation of RAM requirements

mediapipe =0.10.8 Extraction Facial Feature Extraction

scipy =1.11 Extraction Extraction of blinks

pandas =1.5 File Handling Loading and storing of files

openpyxl =3.1 File Handling Support for Excel Files

matplotlib =3.7 Plotting Creation of summary graphs

qtpy =2.3 GUI Simplified Qt interface for Python

qtawesome =1.1 GUI FontAwesome Icons Interface for Qt

PyQt6 =6.5.3 GUI Qt Interface for Python

PyQt6-Qt6 =6.5.3 GUI Qt Library

pyqtgraph =0.13 GUI Graph Visualization

pyqtconfig =0.9 GUI Saving and loading of user change settings
pluggy =1.0 GUI Hook configuration between JeFaPaTo and GUI
structlog =21.5 Logging Structured logging of information for development
rich =12.0 Logging Colored logging

plyer =2.1 Notifications Notification for the user for completed

6 Ongoing Development

JeFaPaTo finished the first stable release and will continue to be developed to support the analysis of facial features and
expressions. Given the potential of high temporal resolution video data to yield novel insights into facial movements,
we aim to incorporate standard 2D measurement-based features into our analysis. An issue frequently associated with
facial palsy is synkinesis, characterized by involuntary facial muscle movements concurrent with voluntary movements
of other facial muscles, such as the eye closing involuntarily when the patient smiles. Hence, a joint analysis of the
blinking pattern and mouth movement could help better understand the underlying processes. The EAR is sensitive to
head rotation. Careful setting up the experiment can reduce the influence of head rotation, but it is not always possible.
To support the analysis of facial palsy patients, we plan to implement a 3D head pose estimation to correct the future
EAR score for head rotation.

7 Acknowledgements

Supported by Deutsche Forschungsgemeinschaft (DFG - German Research Foundation) project 427899908 BRIDGING
THE GAP: MIMICS AND MUSCLES (DE 735/15-1 and GU 463/12-1). We acknowledge the helpful feedback for

JeFaPaTo A PREPRINT

the graphical user interface development and quality-of-life requests from Lukas Schuhmann, Elisa Furche, Elisabeth
Hentschel, and Yuxuan Xie.

References

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA, 2009. ISBN
1441412697.

Camillo Lugaresi, Jiugiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja, Michael Hays, Fan Zhang, Chuo-
Ling Chang, Ming Guang Yong, Juhyun Lee, Wan-Teh Chang, Wei Hua, Manfred Georg, and Matthias Grundmann.
MediaPipe: A Framework for Building Perception Pipelines, June 2019.

Yury Kartynnik, Artsiom Ablavatski, Ivan Grishchenko, and Matthias Grundmann. Real-time Facial Surface Geometry
from Monocular Video on Mobile GPUs. ArXiv, abs/1907.06724, July 2019. doi:10.48550/arXiv.1907.06724.

Tereza Soukupova. Real-Time Eye Blink Detection using Facial Landmarks. page 8, February 2016. URL https:
//api.semanticscholar.org/CorpusID:35923299,

Riverbank Computing Limited. Pyqt6, 2023. URL https://www.riverbankcomputing.com/software/pyqt/.
The Qt Componany. Qt, 2023. URL https://www.qt.io/.

Luke Campagnola. Pyqtgraph: Scientific graphics and gui library for python, 2020. URL https://github.com/
pyqtgraph/pyqtgraphl

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,
Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod
Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, ilhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Ant6énio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, SciPy 1.0
Contributors, Aditya Vijaykumar, Alessandro Pietro Bardelli, Alex Rothberg, Andreas Hilboll, Andreas Kloeckner,
Anthony Scopatz, Antony Lee, Ariel Rokem, C. Nathan Woods, Chad Fulton, Charles Masson, Christian Hiaggstrom,
Clark Fitzgerald, David A. Nicholson, David R. Hagen, Dmitrii V. Pasechnik, Emanuele Olivetti, Eric Martin, Eric
Wieser, Fabrice Silva, Felix Lenders, Florian Wilhelm, G. Young, Gavin A. Price, Gert-Ludwig Ingold, Gregory E.
Allen, Gregory R. Lee, Hervé Audren, Irvin Probst, Jorg P. Dietrich, Jacob Silterra, James T Webber, Janko Slavic,
Joel Nothman, Johannes Buchner, Johannes Kulick, Johannes L. Schonberger, José Vinicius de Miranda Cardoso,
Joscha Reimer, Joseph Harrington, Juan Luis Cano Rodriguez, Juan Nunez-Iglesias, Justin Kuczynski, Kevin Tritz,
Martin Thoma, Matthew Newville, Matthias Kiimmerer, Maximilian Bolingbroke, Michael Tartre, Mikhail Pak,
Nathaniel J. Smith, Nikolai Nowaczyk, Nikolay Shebanov, Oleksandr Pavlyk, Per A. Brodtkorb, Perry Lee, Robert T.
McGibbon, Roman Feldbauer, Sam Lewis, Sam Tygier, Scott Sievert, Sebastiano Vigna, Stefan Peterson, Surhud
More, Tadeusz Pudlik, Takuya Oshima, Thomas J. Pingel, Thomas P. Robitaille, Thomas Spura, Thouis R. Jones, Tim
Cera, Tim Leslie, Tiziano Zito, Tom Krauss, Utkarsh Upadhyay, Yaroslav O. Halchenko, and Yoshiki Vizquez-Baeza.
SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3):261-272, March 2020.
ISSN 1548-7091, 1548-7105. doi:10.1038/s41592-019-0686-2.

Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and
Cybernetics, 9(1):62-66, 1979. doi:10.1109/TSMC.1979.4310076.

Anaconda software distribution, 2020. URL https://docs.anaconda.com/|

https://doi.org/10.48550/arXiv.1907.06724
https://api.semanticscholar.org/CorpusID:35923299
https://api.semanticscholar.org/CorpusID:35923299
https://www.riverbankcomputing.com/software/pyqt/
https://www.qt.io/
https://github.com/pyqtgraph/pyqtgraph
https://github.com/pyqtgraph/pyqtgraph
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/TSMC.1979.4310076
https://docs.anaconda.com/

	Summary
	Statement of need
	Functionality and Usage
	Extracted Medical Relevant Statistics
	Platform Support
	Libraries

	Ongoing Development
	Acknowledgements

