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Abstract. Knowledge transfer, zero-shot learning and semantic image
retrieval are methods that aim at improving accuracy by utilizing seman-
tic information, e.g., from WordNet. It is assumed that this information
can augment or replace missing visual data in the form of labeled training
images because semantic similarity correlates with visual similarity.
This assumption may seem trivial, but is crucial for the application of
such semantic methods. Any violation can cause mispredictions. Thus,
it is important to examine the visual-semantic relationship for a certain
target problem. In this paper, we use five different semantic and visual
similarity measures each to thoroughly analyze the relationship without
relying too much on any single definition.
We postulate and verify three highly consequential hypotheses on the
relationship. Our results show that it indeed exists and that WordNet
semantic similarity carries more information about visual similarity than
just the knowledge of “different classes look different”. They suggest that
classification is not the ideal application for semantic methods and that
wrong semantic information is much worse than none.

1 Introduction

There exist applications in which labeled training data cannot be acquired in
sufficient amounts to reach the high accuracy associated with contemporary con-
volutional neural networks (CNNs) with millions of parameters. These include
industrial [14, 18] and medical [15, 27, 31] applications as well as research in other
fields like wildlife monitoring [4, 5, 7]. Semantic methods such as knowledge trans-
fer and zero-shot learning often process information about the semantic relation-
ship between classes from databases like WordNet [19] to allow high-accuracy
classification even when training data is insufficient or missing entirely [24]. They
can only function when the unknown visual relationships between classes are pre-
dictable from the given semantic relationships.

In this paper, we analyze and test this crucial assumption by evaluating the
relationship between visual and semantic similarity in a detailed and systematic
manner. To guide our analysis, we formulate three highly consequential, non-
trivial hypotheses around the visual-semantic relationship. The exact nature of
the links and the similarity terms is specified in section 4. Our first hypothesis
concerns the relationship itself:
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(a) A deer and a forest. By taxonomy
only, their semantic similarity is weak.
Visual similarity however is strong.

(b) An orchid and a sunflower. Their
semantic similarity very strong due to
them both being flowers. The visual sim-
ilarity between them is weak.

Fig. 1. Examples of semantic-visual disagreement.

H1: There is a link between visual and semantic similarity. It seems
trivial on the surface, but each individual component requires a proper, non-
trivial definition to ultimately make the hypothesis verifiable (see section 4).
The observed effectiveness of semantic methods suggests that knowledge about
semantic relationships is somewhat applicable in the visual domain. However,
counter-examples are easily found, e.g., figs. 1 and 4. Furthermore, a crude ap-
proximation of semantic similarity is already given by the expectation that “dif-
ferent classes look different” (see section 2.1). A similarity measure based on
actual semantic knowledge should be a stronger predictor of visual similarity
than this simple baseline.

Semantic methods seek to improve accuracy and in turn reduce model confu-
sion, but the relationship between confusion and visual similarity is non-trivial.
Insights about the low-level visual similarity may not apply to the more abstract
confusion. To cover not only largely model-free, but also also model-specific no-
tions of visual similarity, we formulate our second and third hypotheses:

H2: There is a link between visual similarity and model confusion. Low
inter-class distance in a feature space correlates with confusion, but it could also
indicate strong visual similarity. This link depends on the selected features and
classifier. It is also affected by violations of “different classes look different” in
the dataset.

H3: There is a link between semantic similarity and model confusion.
This link should be investigated because it directly relates to the goal of se-
mantic methods, which is to reduce confusion by adding semantic information.
It “skips” the low-level visual component and as such is interesting on its own.
However, the expectation that “different classes look different” can already ex-
plain the complete confusion matrix of a perfect classifier. We also expect it to
partly explain a real classifier’s confusions. So, to considerH3 verified, we require
semantic similarity to show an even stronger correlation to confusion than given
by this expectation.
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Our main contribution is an extensive and insightful evaluation of this rela-
tionship across five different semantic and visual similarity measures respectively.
It is based on the three aforementioned hypotheses around the relationship. We
show quantitative results measuring the agreement between individual measures
and across visual and semantic similarities as rank correlation. Moreover, we an-
alyze special cases of agreement and disagreement qualitatively. The results and
their various implications are discussed in section 5.5. They suggest that, while
the relationship exists even beyond the “different classes look different” baseline,
tasks different from classification need further research. The semantically reduc-
tive nature of class labels suggests that semantic methods may perform better
on more complex tasks.

1.1 Related Work

The relationship between visual and semantic similarity has been subject of
previous investigation. In [6], Deselaers and Ferrari consider a semantic similarity
measure by Jiang and Conrath (see section 2.4 and [11]) as well as category
histograms, in conjunction with the ImageNet dataset. They propose a novel
distance function based on semantic as well as visual similarity to use in a
nearest neighbor setting that outperforms purely visual distance functions. The
authors also show a positive correlation between visual and semantic similarity
for their choice of similarity measures on the ImageNet dataset. Their selections
of Jiang-Conrath distance and the GIST feature descriptor are also evaluated in
our work, where we add several different methods to compare.

Bilal et al. observe the confusion matrix of a convolutional network trained
on the ImageNet-1k dataset [26] in [2]. They use visual analytics to show that
characteristics of the class hierarchy can be found in the confusion matrix, a
result related to our hypothesis H3.

2 Semantic Similarity

The term semantic similarity describes the degree to which two concepts in-
teract semantically. A common definition requires taking into account only the
taxonomical (hierarchical) relationship between the concepts [9, p. 10]. A more
general notion is semantic relatedness, where any type of semantic link may be
considered [9, p. 10]. Both are semantic measures, which also include distances
and dissimilarities [9, p. 9]. We adhere to these definitions in this work, specifi-
cally the hierarchical restriction of semantic similarity.

2.1 Prerequisites

In certain cases, it is easier to formulate a semantic measure based on hierarchical
relationships as a distance first. Such a distance d between two concepts x, y can
be converted to a similarity by 1/(1+d(x, y)) [9, p. 60]. This results in a measure
bounded by (0, 1], where 1 stands for maximal similarity, i.e., the distance is zero.
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We will apply this rule to convert all distances to similarities in our experiments.
We also apply it to dissimilarities, which are comparable to distances, but do
not fulfill the triangle inequality.

Semantic Baseline When training a classifier without using semantic embeddings
[1] or hierarchical classification techniques [29], there is still prior information
about semantic similarity given by the classification problem itself. Specifically,
it is postulated that “classes that are different look different” (see section 4). Ma-
chine learning can not work if this assumption is violated, i.e., different classes
look identical. We encode this “knowledge” in semantic similarity measure, de-
fined as 1 for two identical concepts and zero otherwise. It will serve as a baseline
for comparison with all other similarities.

2.2 Graph-based Similarities

We can describe a directed acyclic graph G(C, is-a) using the taxonomic relation
is-a and the set of all concepts C. The notions of semantic similarity described in
this section can be expressed using properties of G. The graph distance dG(x, y)
between two nodes x, y, which is defined as the length of the shortest path xPy, is
an important example. If required, we reduce the graph G to a rooted tree T with
root r by iterating through all nodes with multiple ancestors and successively
removing the edges to ancestors with the lowest amount of successors. In a tree,
we can then define the depth of a concept x as dT (x) = dT (r, x). This simple,
greedy approach make very few cuts in practice and does not strongly affect
results.

A simple approach is presented by Rada et al. in [22, p. 20], where the
semantic distance between two concepts x and y is defined as the graph distance
dG(x, y) between one concept and the other in G.

To make similarities comparable between different taxonomies, it may be
desirable to take the overall depth of the hierarchy into account. Resnik presents
such an approach for trees in [23], considering the maximal depth of T and the
least common ancestor L(x, y). L is the uniquely defined node in the shortest
path between two concepts x and y that is an ancestor to both [9, p. 61]. The
similarity between x and y is then given as [23, p. 3]:

2 ·max
z∈C

dT (z)− dT (x,L(x, y))− dT (y,L(x, y)). (1)

2.3 Feature-based Similarities

The following approaches use a set-theoretic view of semantics. The set of fea-
tures φ(x) of a concept x is usually defined as the set of ancestors A(x) of x [9].
We also include x itself, such that φ(x) = A(x) ∪ {x} [28].

Inspired by the Jaccard coefficient, Maedche and Staab propose a similarity
measure defined as the intersection over union of the concept features of x and y
respectively [17, p. 4]. This similarity is bounded by [0, 1], with identical concepts
always resulting in 1.
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Sanchez et al. present a dissimilarity measure that represents the ratio of
distinct features to shared features of two concepts. It is defined by [28, p. 7723]:

log2

(
1 +

|φ(x)\φ(y)|+ |φ(y)\φ(x)|
|φ(x)\φ(y)|+ |φ(y)\φ(x)|+ |φ(y) ∩ φ(x)|

)
. (2)

2.4 Information-based Similarities

Semantic similarity is also defined using the notion of informativeness of a con-
cept, inspired by information theory. Each concept x is assigned an Information
Content (IC) I(x) [23, 25]. This can be defined using only properties of the tax-
onomy, i.e., the graph G (intrinsic IC), or using the probability of observing the
concept in corpora (extrinsic IC) [9, p. 54].

We use an intrinsic definition presented by Zhou et al. in [36], based on the
descendants D(x):

I(x) = k ·
(

1− |D(x)|
|C|

)
+ (1− k) ·

( log(dT (x))

log(maxz∈C dT (z))

)
. (3)

With a definition of IC, we can apply an information-based similarity mea-
sure. Jiang and Conrath propose a semantic distance in [11] using the notion of
Most Informative Common Ancestor M(x, y) of two concepts x, y. It is defined
as the element in (A(x) ∩ A(y)) ∪ (x ∩ y) with the highest IC [9, p. 65]. The
distance is then defined as [11, p. 8]:

I(x) + I(y)− 2 · I(M(x, y)). (4)

3 Visual Similarity

Assessing the similarity of images is not a trivial task, mostly because the term
“similarity” can be defined in many different ways. In this section, we look at
two common interpretations of visual similarity, namely perceptual metrics and
feature-based similarity measures.

3.1 Perceptual Metrics

Perceptual metrics are usually employed to quantify the distortion or information
loss incurred by using compression algorithms. Such methods aim to minimize
the difference between the original image and the compressed image and thereby
maximize the similarity between both. However, perceptual metrics can also be
used to assess the similarity of two independent images.

An image can be represented by an element of a high-dimensional vector
space. In this case, the Euclidean distance is a natural candidate for a dis-
similarity measure. With the rule 1/(1 + d) from section 2.1, the distance is
transformed into a visual similarity measure. To normalize the measure w.r.t.
image dimensions and to simplify calculations, the mean squared error (MSE)
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is used. Applying the MSE to estimate image similarity has shortcomings. For
example, shifting an image by one pixel significantly changes the distances to
other images, and even its unshifted self. An alternative, but related measure is
the mean absolute difference (MAD), which we also consider in our experiments.

In [34], Wang et al. develop a perceptual metric called Structural Similarity
Index to adress shortcomings of previous methods. Specifically, they consider
properties of the human visual system such that the index better reflects human
judgement of visual similarity.

We use MSE, MAD and SSIM as perceptual metrics to indicate visual simi-
larity in our experiments. There are better performing methods when considering
human judgement, e.g., [35]. However, we cannot guarantee that humans always
treat visuals and semantics as separate. Therefore, we avoid further methods
that are motivated by human properties [33, 3] or already incorporate semantic
knowledge [16, 8].

3.2 Feature-based Measures

Features are extracted to represent images at an abstract level. Thus, distances
in such a feature space of images correspond to visual similarity in a possibly
more robust way than the aforementioned perceptual metrics. Features have
inherent or learned invariances w.r.t. certain transformations that should not
affect the notion of visual similarity strongly. However, learned features may
also be invariant to transformations that do affect visual similarity because they
are optimized for semantic distinction. This behavior needs to be considered
when selecting abstract features to determine visual similarity.

GIST [21] is an image descriptor that aims at describing a whole scene using a
small number of estimations of specific perceptual properties, such that similar
content is close in the resulting feature space. It is based on the notion of a
spatial envelope, inspired by architecture, that can be extracted from an image
and used to calculate statistics.

For reference, we observe the confusions of five ResNet-32 [10] models to rep-
resent feature-based visual similarity on the highest level of abstraction. Because
confusion is not a symmetric function, we apply a transform (M + MT )/2 to
obtain a symmetric representation of the confusion matrix.

4 Evaluating the Relationship

Visual and semantic similarity are measures defined on different domains. Se-
mantic similarities compare concepts and visual similarities compare individual
images. To analyze a correlation, a common domain over which both can be eval-
uated is essential. We propose to calculate similarities over all pairs of classes in
an image classification dataset, which can be defined for both visual and seman-
tic similarities. These pairwise similarities are then tested for correlation. The
process is clarified in the following:
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1. Dataset. We use the CIFAR-100 dataset [13] to verify our hypotheses. This
dataset has a scale at which all experiments take a reasonable amount of time.
Our computation times grow quadratically with the number of classes as well as
images. Hence, we do not consider ImageNet [26] or 80 million tiny images [32]
despite their larger coverage of semantic concepts.
2. Semantic similarities. We calculate semantic similarity measures over all
pairs of classes in the dataset. The taxonomic relation is-a is taken from Word-
Net [19] by mapping all classes in CIFAR-100 to their counterpart concepts in
WordNet, inducing the graph G(C, is-a). Some measures are defined as distances
or dissimilarities. We use the rule presented in section 2.1 to derive similarities.
The following measures are evaluated over all pairs of concepts (x, y) ∈ C × C
(see section 2):

(S1) Graph distance dG(x, y) as proposed by Rada et al., see [22, p. 20].
(S2) Resnik’s maximum depth bounded similarity, see eq. (1) and [23, p. 3].
(S3) Maedche and Staab similarity based on intersection over union of concept

features [17, p. 4].
(S4) Dissimilarity proposed by Sanchez et al. using distinct to shared features

ratio, see eq. (2) and [28, p. 7723].
(S5) Jiang and Conrath’s distance [11, p. 8], eq. (4), using intrinsic Information

Content from [36], see eq. (3).
3. Visual similarities. To estimate a visual similarity between two classes x
and y, we calculate the similarity of each test image of class x with each test
image of class y and use the average as an estimate. Again we apply the rule
from section 2.1 for distances and dissimilarities. The process of comparing all
images from one class to all from another is performed for the following measures
(see section 3):

(V1) The mean squared error (MSE) between two images.
(V2) The mean absolute difference (MAD) between two images.
(V3) Structural Similarity Index (SSIM), see [34].
(V4) Distance between GIST descriptors [21] of images in feature space.
(V5) Observed symmetric confusions of five ResNet-32 [10] models trained on the

CIFAR-100 training set.
4. Aggregation. For both visual and semantic similarity, there is more than
one candidate method, i.e., (S1)-(S5) and (V1)-(V5). For the following steps,
we need a single measure for each type of similarity, which we aggregate from
(S1)-(S5) and (V1)-(V5) respectively. Since each method has its merits, selecting
only one each would not be representative of the type of similarity. The output
of all candidate methods is normalized individually, such that its range is in
[0, 1]. We then calculate the average over each type of similarity, i.e., visual and
semantic, to obtain two distinct measures (S) and (V).
5. Baselines. A basic assumption of machine learning is that “the domains oc-
cupied by features of different classes are separated” [20, p. 8]. Intuitively, this
should apply to the images of different classes as well. We can then expect to
predict at least some of the visual similarity between classes just by knowing
whether the classes are identical or not. This knowledge is encoded in the se-
mantic baseline (SB), defined as 1 for identical concepts and zero otherwise (see
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(S
1)

(S
2)

(S
3)

(S
4)

(S
5)

(S1)

(S2)

(S3)

(S4)

(S5)

1.00 0.99 0.81 0.81 0.82

0.99 1.00 0.84 0.84 0.85

0.81 0.84 1.00 1.00 0.97

0.81 0.84 1.00 1.00 0.97

0.82 0.85 0.97 0.97 1.00

(a) Semantic similarities

(V
1)

(V
2)

(V
3)

(V
4)

(V
5)

(V1)

(V2)

(V3)

(V4)

(V5)

1.00 0.03 0.25 0.56 0.26

0.03 1.00 0.12 0.02 0.09

0.25 0.12 1.00 0.08 0.06

0.56 0.02 0.08 1.00 0.20

0.26 0.09 0.06 0.20 1.00

(b) Visual similarities

Fig. 2. Rank correlation coefficient between different similarities, grouped by semantic
and visual. p < 0.05 for all correlations.

also section 2.1). We propose a second baseline, the semantic noise (SN), where
the aforementioned pairwise semantic similarity (S) is calculated, but the con-
cepts are permuted randomly. This baseline serves to assess the informativeness
of the taxonomic relationships.
6. Rank Correlation The similarity measures mentioned above are useful to
define an order of similarity, i.e., whether a concept x is more similar to z than
concept y. However, it is not reasonable in all cases to interpret them in a linear
fashion, especially since many are derived from distances or dissimilarities and
all were normalized from different ranges of values and then aggregated. We
therefore test the similarities for correlation w.r.t. ranking, using Spearman’s
rank correlation coefficient [30] instead of looking for a linear relationship.

5 Results

In the following, we present the results of our experiments defined in the previous
section. We first examine both types of similarity individually, comparing the
five candidate methods each. Afterwards, the hypotheses proposed in section 1
are tested. We then investigate cases of (dis-)agreement between both types of
similarity.

5.1 Semantic Similarities

We first analyze the pairwise semantic similarities over all classes. Although we
consider semantic similarity to be a single measure when verifying our hypothe-
ses, studying the correlation between our candidate methods (S1)-(S5) is also
important. While of course affected by our selection, it reflects upon the degree
of agreement between several experts in the domain. Figure 2a visualizes the cor-
relations. The graph-based methods (S1) and (S2) agree more strongly with each
other than with the rest. The same is true of feature-based methods (S3) and
(S4), which show the strongest correlation. The inter-agreement R, calculated
by taking the average of all correlations except for the main diagonal, is 0.89.
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This is a strong agreement and suggests that the order of similarity between
concepts can be, for the most part, considered representative of a universally
agreed upon definition (if one existed). At the same time, one needs to consider
that all methods utilize the same WordNet hierarchy.

Baselines Our semantic baseline (SB, see section 4) encodes the basic knowledge
that different classes look different. This property should also be fulfilled by
the average semantic similarity (S, see section 4). We thus expect there to be
at least some correlation. The rank correlation between our average semantic
similarity (S) and the semantic baseline (SB) is 0.17 with p < 0.05. This is a
weak correlation compared to the strong inter-agreement of 0.89, which suggests
that the similarities (S1)-(S5) are vastly more complex than (SB), but at the
same time have a lot in common. As a second baseline we test the semantic
noise (SN, see section 4). It is not correlated with (S) at ρ = 0.01, p > 0.05,
meaning that the taxonomic relationship strongly affects (S). If it did not, the
labels could be permuted without changing the pairwise similarities.

5.2 Visual Similarities

Intuitively, visual similarity is a concept that is hard to define clearly and
uniquely. Because we selected very different approaches with very different ideas
and motivations behind them, we expect the agreement between (V1)-(V5) to
be weak. Figure 2b shows the rank correlations between each candidate method.
The agreement is strongest between the mean squared error (V1) and the GIST
feature distance (V4). Both are L2 distances, but calculated in separate domains,
highlighting the strong nonlinearity and complexity of image descriptors. The
inter-agreement is very weak at R = 0.17. The results confirms our intuitions
that visual similarity is very hard to define in mathematical terms. There is also
no body of knowledge that all methods use in the visual domain like WordNet
provides for semantics.

5.3 Hypotheses

To give a brief overview, the rank correlations between the different components
of H1-H3 are shown in fig. 3. In the following, we give our results w.r.t. the
individual hypotheses. They are discussed further in section 5.5.

H1: There is a link between visual and semantic similarity. Using the definitions
from section 4 including the semantic baseline (SB), we can examine the respec-
tive correlations. The rank correlation between (V) and (S) is 0.23, p < 0.05,
indicating a link. Before we consider the hypothesis verified, we also evaluate
what fraction of (V) is already explained by the semantic baseline (SB) as per
our condition given in section 4. The rank correlation between (V) and (SB) is
0.17, p < 0.05, which is a weaker link than between (V) and (S). Additionally,
(V) and (SN) are not correlated, illustrating that the wrong semantic knowledge
can be worse than none. Thus, we can verify H1.
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(V
)

(S
)

(S
N

)

(S
B

)

(V)

(S)

(SN)

(SB)

0.17 0.23 (-0.01) 0.17

0.23 0.89 (0.01) 0.17

(-0.01) (0.01) 1.00 0.17

0.17 0.17 0.17 1.00

Fig. 3. Rank correlation coefficient between different types of similarities, grouped
by semantic and visual. p < 0.05 except for numbers in parentheses. Main diagonal
represents inter-agreement R. Similarities: (V) – visual, (S) – semantic, (SN) – semantic
noise, (SB) – semantic baseline.

H2: There is a link between visual similarity and model confusion. Since model
confusion as (V5) is a contributor to average visual similarity (V), we consider
only (V-), comprised of (V1)-(V4) for this hypothesis. The rank correlation be-
tween (V-) and the symmetric model confusion (V5) is 0.21, p < 0.05. Conse-
quently, H2 is also verified.

H3: There is a link between semantic similarity and model confusion. Here we
evaluate the relationship between (S) and the symmetric confusion matrix (V5)
as defined in section 4. (S) should offer more information about where confu-
sions occur than the baseline (SB) to consider H3 verified. The rank correlation
between (V5) and (S) is 0.39, p < 0.05, while (V5) and (SB) are only correlated
at ρ = 0.21, p < 0.05, meaning that H3 is verified, too.

See section 5.5 for a discussion of possible consequences.

5.4 Agreement and Disagreement

To further analyze the the correlation, we examine specific cases of very strong
agreement or disagreement. Figure 4 shows these extreme cases. We determine
agreement based on ranking, so the most strongly agreed upon pairs (see fig. 4a)
still show different absolute similarity numbers. Interestingly, they are not cases
of extreme similarities. It suggests that even weak disagreements are more likely
to be found at similarities close to the boundaries. When investigating strong
disagreement as shown in fig. 4b, there are naturally extreme values to be found.
All three pairs involve forest.n.01, which was also a part of the second
least semantically similar pair. Its partners are all animals which usually have a
background visually similar to a forest, hence the strong disagreement. However,
the low semantic similarity is possibly an artifact of reducing a whole image to
a single concept.
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Rank diff.: 0.01%, sem./vis. sim.: 0.13 / 0.18

Rank diff.: 0.01%, sem./vis. sim.: 0.34 / 0.23

Rank diff.: 0.01%, sem./vis. sim.: 0.15 / 0.19

(a) Most agreed upon

Rank diff.: 97.23%, sem./vis. sim.: 0.04 / 0.25

Rank diff.: 96.01%, sem./vis. sim.: 0.06 / 0.25

Rank diff.: 95.53%, sem./vis. sim.: 0.06 / 0.25

(b) Least agreed upon

Fig. 4. CIFAR-100 classes selected by highest and lowest ranking agreement between
visual and semantic similarity measures as defined in section 4.

5.5 Discussion

H1: There is a link between visual and semantic similarity. The relationship is
stronger than a simple baseline, but weak overall at ρ = 0.23 vs ρ = 0.17. This
should be considered when employing methods where visuals and semantics in-
teract, e.g., in knowledge transfer. Failure cases such as in fig. 4b can only be
found when labels are known, which has implications for real-life applications of
semantic methods. As labels are unknown or lack visual examples, such cases are
not predictable beforehand. This poses problems for applications that rely on
accurate classification such as safety-critical equipment or even research in other
fields consuming model predictions. A real-world example is wildlife conserva-
tionists relying on statistics from automatic camera trap image classification to
draw conclusions on biodiversity. That the semantic similarity of randomly per-
muted classes is not correlated with visual similarity at all, while the baseline is,
suggests that wrong semantic knowledge can be much worse than no knowledge.

H2: There is a link between visual similarity and model confusion. Visual similar-
ity is defined on a low level for H2. As such, it should not cause model confusion
by itself. On the one hand, the model can fail to generalize and cause an avoid-
able confusion. On the other hand, there may be an issue with the dataset. The
test set may be sampled from a different distribution than the training set. It
may also violate the postulate that different classes look different by containing
the same or similar images across classes.

H3: There is a link between semantic similarity and model confusion. Similar
to H1, it suggests that semantic methods could be applied to our data, but
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maybe not in general because failure cases are unpredictable. However, it im-
plies a stronger effectiveness than H1 at ρ = 0.39 vs. the baseline at ρ = 0.21.
We attribute this to the model’s capability of abstraction. It aligns with the idea
of taxonomy, which is based on repeated abstraction of concepts. Using a formu-
lation that optimizes semantic similarity instead of cross-entropy (which would
correspond to the semantic baseline) could help in our situation. It may still
not generalize to other settings and any real-world application of such methods
should be verified with at least a small test set.

Qualitative Some failures or disagreements may not be a result of the relationship
itself, but of its application to image classification. The example from fig. 1 is
valid when the whole image is reduced to a single concept. Still, the agreement
between visual and semantic similarity may increase when the image is described
in a more holistic fashion. While “deer” and “forest” as nouns are taxonomically
only loosely related, the descriptions “A deer standing in a forest, partially
occluded by a tree and tall grass” and “A forest composed of many trees and
bushes, with the daytime sky visible” already appear more similar, suggesting
that more complex tasks stand to benefit more from semantic methods.

6 Conclusion

We present results of a comprehensive evaluation of semantic similarity measures
and their correlation with visual similarities. We measure against the simple prior
knowledge of different classes having different visuals. Then, we show that the
relationship between semantic similarity, as calculated from WordNet [19] using
five different methods, and visual similarity, also represented by five measures,
is more meaningful than that. Furthermore, inter-agreement measures suggest
that semantic similarity has a more agreed upon definition than visual similarity,
although both concepts are based on human perception.

The results indicate that further research, especially into tasks different from
image classification is warranted because of the semantically reductive nature
of image labels. It may restrict the performance of semantic methods unnecces-
sarily. It is likely that the relationship between semantic and visual similarity is
much stronger when the semantics of an image are better approximated.

Further work should focus on the experimental setup. Viable alternatives to
the simple visual similarity measures that we currently use are ones based on im-
age gradients as well as cross-correlation. Larger datasets with well established
semantic groundings such as ImageNet could be used together with a stochastic
approach to approximating similarity to make them computationally feasible.
Additonally, not only nouns should be considered, but also adjectives, decompo-
sitions of objects into parts. Datasets like Visual Genome [12] offer more complex
annotations mapped to WordNet concepts.
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