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Abstract. We present a method for actively calibrating a multi-camera
system consisting of pan-tilt zoom cameras. After a coarse initial cali-
bration, we determine the probability of each relative pose using a prob-
ability distribution based on the camera images. The relative poses are
optimized by rotating and zooming each camera pair in a way that sig-
nificantly simplifies the problem of extracting correct point correspon-
dences. In a final step we use active camera control, the optimized rela-
tive poses, and their probabilities to calibrate the complete multi-camera
system with a minimal number of relative poses. During this process we
estimate the translation scales in a camera triangle using only two of the
three relative poses and no point correspondences. Quantitative experi-
ments on real data outline the robustness and accuracy of our approach.

1 Introduction

In the recent years multi-camera systems became increasingly important in com-
puter vision. Many applications take advantage of multiple cameras observing a
scene. Multi-camera systems become even more powerful if they consist of active
cameras, i. e. pan-tilt zoom cameras (Fig. 1). For many applications, however,
the (active) multi-camera system needs to be calibrated, i. e. the intrinsic and
extrinsic parameters of the cameras have to be determined. Intrinsic param-
eters of a camera can be estimated using a calibration pattern [1] or camera
self-calibration methods for a rotating camera [2, 3]. The focus of this paper is
on (active) extrinsic calibration which consists of estimating the rotation and
translation of each camera relative to some common world coordinate system.

Classical methods for extrinsic multi-camera calibration need a special cali-
bration pattern [1] or user interaction like a moving LED in a dark room [4, 5].
From a practical point of view, however, a pure self-calibration is most appeal-
ing. Self-calibration in this context means that no artificial landmarks or user
interaction are necessary. The cameras estimate their position only from the im-
ages they record. An example for self-calibration of a static multi-camera system
is the work of Läbe and Förstner [6]. Given several images they extract point
correspondences and use these to estimate the relative poses. Another example
is the graph based calibration method proposed by Bajramovic and Denzler [7]
which considers the uncertainty of the estimated relative pose of each camera
pair. However, both methods are designed for static cameras and do not use the
benefits of active camera control.
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Fig. 1. A multi-camera system (left) consisting of six pan-tilt zoom cameras (white
circles). The cameras are mounted near the intersection of the pan and tilt axes (right).

Sinha and Pollefeys [8] suggest a method where each pan-tilt zoom camera
builds a high resolution panorama image. These images are used for relative pose
estimation. However, these huge images can contain many ambiguities which
affect the extraction of correct point correspondences. The calibration method
of Chippendale and Tobia [9] defines an observer camera which searches for the
continuously moving other cameras. If the observer spots some other camera the
relative pose between the two cameras is extracted by detecting the circle shape
of the camera lens and tracking some special predefined camera movements.
The applicability and accuracy of this method highly depends on the distance
between the cameras.

One of the biggest problems in extrinsic camera calibration is extracting
correct point correspondences between the camera pairs. This problem is called
wide baseline stereo and several approaches can be found in the literature [10,
11]. However, if the cameras have very different viewpoints on a scene, projective
influences and occlusions complicate or make it impossible to establish correct
point correspondences. Active cameras could use rotation and zoom to reduce
these projective influences.

In this paper, we present a method which uses active camera control to cali-
brate a multi-camera system consisting of pan-tilt zoom cameras. After an initial
coarse calibration which uses the common field of view detection of Brückner et
al. [12] to reduce ambiguities in the point correspondence detection, the best
relative pose for each camera pair is selected based on its probability. Hence we
present an image based probability distribution for relative poses. Given the ini-
tial poses, each camera pair rotates and zooms in a way that the points of view
of the two cameras are very similar. The resulting similar camera images signifi-
cantly simplify the problem of establishing new point correspondences which are
used to reestimate the relative poses. In a final step we use the relative poses and
their probabilities to calibrate the complete multi-camera system from a minimal
set of relative poses. In order to estimate the scale factors of the relative poses in
a camera triangle, we use only two of the three relative poses and we do not need
any triple point correspondences. Instead we use active camera control and our
image based probability distribution for relative poses. This reduces the number
of relative poses needed for the complete calibration and totally avoids outlier
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point correspondences. The remainder of this paper is organized as follows: in
Section 2 we introduce some basics and notation. Our method is described in
Section 3. In Section 4 we present and discuss our experiments. Conclusions are
given in Section 5.

2 Basics

2.1 Camera Model and Relative Pose between Cameras

A world point Xw is projected to the image point x
def= KRptu (RiXw + ti),

where Ri, ti are the extrinsic camera parameters (rotation and translation), K is
the pinhole matrix [13] and Rptu is the rotation of the pan-tilt unit. We assume
the pan and tilt axes to be identical to the Y and X axes of the camera coordinate
system, respectively. Throughout the paper we use image points which are nor-
malized with respect to the camera and pan-tilt rotation x̃

def= R−1
ptuK

−1x. From
this point on, when talking about the camera orientation and position we actu-
ally mean Ri, ti with no pan-tilt rotation Rptu = I. The relative pose between
two cameras i and j is defined as Ri,j

def= RjR
−1
i and ti,j

def= tj −RjR
−1
i ti.

2.2 Common Field of View Detection

Common field of view detection consists of deciding which image pairs show a
common part of the world. We will briefly describe the probabilistic method of
Brückner et al. [12] which gave the best results in their experiments.

Given two camera images, the difference of Gaussian detector [11] is used to
detect interest points Ci = {x̃1, . . . , x̃n} and Cj = {x̃′1, . . . , x̃′n′}. For each point
x̃i, the SIFT descriptor des(x̃i) is computed [11]. These descriptors are used to
construct a conditional correspondence probability distribution for each x̃i

p
(
x̃′j | x̃i

)
∝ exp

(
−
di,jd − dN (x̃i)
λd dN (x̃i)

)
, (1)

where λd is the inverse scale parameter of the exponential distribution, di,jd =
dist(des(x̃i),des(x̃′j)) is the Euclidean distance between the descriptors of the
points x̃i and x̃′j , and dN (x̃i) = minj(d

i,j
d ) denotes the distance of the nearest

neighbor of the point x̃i. Each of the resulting conditional probability distribu-
tions p(x̃′j | x̃i) has to be normalized such that

∑
x̃′

j∈Cj
p(x̃′j | x̃i) = 1 holds.

The conditional probability distributions are used to calculate the normalized
joint entropy which is defined as

H(Ci, Cj)
def= −1

η

∑
x̃i∈Ci

∑
x̃′

j∈Cj

p(x̃i)p
(
x̃′j | x̃i

)
log
(
p(x̃i)p

(
x̃′j | x̃i

))
, (2)

where η = log(nn′) is the maximum joint entropy and p(x̃i) is a uniform dis-
tribution if no prior information about the interest points is available. A low
joint entropy H(Ci, Cj) indicates similar images. For further details the reader is
referred to [12].
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Fig. 2. The three steps of our multi-camera calibration method. Each step is described
in the indicated Section.

3 Active Multi-camera Calibration

We calibrate an active multi-camera system consisting of c pan-tilt zoom cam-
eras. For each camera the intrinsic parameters for different zoom steps are as-
sumed to be known. Our calibration method consists of three steps which are
illustrated in Fig. 2: an initial relative pose estimation with an evaluation of the
relative poses, an optimization of these relative poses and a final estimation of
the translation scale factors. Each step uses active camera control in a different
way and to a different extent.

3.1 Initial Relative Pose Estimation and Evaluation

Given the intrinsic parameters, each camera records as many images as necessary
to cover its complete environment. Now each camera pair searches for image pairs
sharing a common field of view (Section 2.2). This search can be viewed as a
prematching of point correspondences which considers the local environment of
each interest point. Hence, it decreases the chance of ambiguities disturbing the
point matching process. Between each of these image pairs point correspondences
are extracted using the difference of Gaussian detector, the SIFT descriptor, the
Euclidean distance, and the two nearest neighbors matching with rejection as
proposed by Lowe [11].

Based on all extracted point correspondences of a camera pair we estimate
the relative pose using the five point algorithm [14]. An important point is that
the translation of these relative poses can only be estimated up to an unknown
scale factor. For the complete calibration of a multi-camera system consistent
scale factors for all translations have to be estimated.

In order to increase the robustness against outliers we embed the five point
algorithm into a RANSAC scheme [15]. As distance measure we use the closest
distance between two viewing rays

di,je
(
x̃i, x̃

′
j

) def= min
λi,λj

∥∥∥∥(λiRi,jx̃i +
ti,j
‖ti,j‖2

)
− λjx̃′j

∥∥∥∥
2

with λi, λj > 0 . (3)

Since we normalize the translation to unit length, it is possible to define the
inlier threshold relative to the camera distance. The scale factors λi and λj need
to be positive which affects the direction of the viewing rays and is similar to
the constraint of 3D points to lie in front of both cameras.

Instead of selecting a single best pose, we select the mp best poses based on
the number of inliers. Since most of these poses are quite similar, we additionally
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constrain the selection to take only relative poses that satisfy a minimum rotation
difference θR and translation difference θt to the already selected relative poses.

Now, each camera pair i, j performs the following procedure for each of its
mp relative pose candidates. First, the two cameras are rotated in a way that
they look into the same direction and their optical axes are aligned (or a setup
as close as possible to this). Camera i has to look in the direction −Ri,jti,j
and camera j looks at −ti,j . From each of the resulting camera images interest
points are extracted. Now, the cameras repeat the first step, but in the opposite
direction. The result of this procedure is a set of interest points Ci and Cj for
each of the two cameras i and j. Given these interest point sets we want to
evaluate the relative pose candidate. Therefore we calculate the probability

p (Ri,j , ti,j) ∝
∑

x̃i∈Ci

∑
x̃′

j∈Cj

p
(
Ri,j , ti,j | x̃′j , x̃i

)
p
(
x̃′j | x̃i

)
p (x̃i) , (4)

where p
(
Ri,j , ti,j | x̃′j , x̃i

) def= exp
(
−di,je

(
x̃i, x̃

′
j

)
/λe
)

is an exponential distri-
bution using the distance measure of (3) and the inverse scale parameter λe,
p
(
x̃′j | x̃i

)
is the conditional correspondence probability of (1) and p (x̃i) is a

uniform distribution if no prior information about the interest points is avail-
able. We note that this probability distribution can also be viewed as an image
similarity measure which is based on image and geometric information. For each
camera pair the relative pose candidate with the highest probability is selected.

3.2 Actively Optimizing the Relative Poses

Given the initial relative poses Ri,j , ti,j we optimize these poses by steering each
camera pair in a way that it can easily establish new point correspondences.

As mentioned in Section 1, the biggest problem in finding correct point cor-
respondences are projective influences. These influences depend on the relation
between camera distance and scene distance and the difference in the viewing di-
rections between the cameras. To reduce these influences we first rotate the two
cameras in a way that their optical axes are aligned as described in Section 3.1.
Additionally we search for the zoom step z of the backmost camera i with the
highest image similarity by

argmin
z

H (Ci (z) , Cj) , (5)

where Ci (z) is the interest point set of camera i at zoom step z and H (Ci, Cj)
is the normalized joint entropy (2). Again, this procedure is repeated for the
opposite direction and yields in an interest point set for each camera. Similar to
the initial calibration we extract point correspondences and use these to estimate
the relative pose. Since we expect the descriptors of two corresponding points
to be very similar due to the high similarity of the camera images, we choose a
stricter rejection threshold for the two nearest neighbors matching than in the
initial calibration. The estimated relative poses are evaluated as described in
Section 3.1. For each camera pair the reestimated relative pose will only be used
if it has a higher probability than the initial relative pose.
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Fig. 3. A camera triangle (i, j, k). Cameras i and k rotate with angle α around the
plane normal of the camera triangle. The scale λs depends on the angle α. There will
be only one angle α where the optical axes of both cameras are aligned (left). At this
point the triangle is correctly scaled. In all other cases the cameras will not look into
the same direction and the scaling between the relative poses is incorrect (right).

3.3 Estimation of the Translation Scale Factors

At this point of our calibration we have for each camera pair i, j a relative pose
Ri,j , ti,j and a probability of this pose p (Ri,j , ti,j). We do not know the correct
scale factor of each translation. Scaling a relative pose always means scaling
the translation. The final calibration can only be estimated up to one common
scale factor [13]. In order to estimate the scale factors in a camera triangle,
traditional methods use either all three relative poses in the triangle [6, 7] or
they try to establish point correspondences between all three camera images
[13]. Our proposed method uses only two of the three relative poses and does
not need any point correspondences at all. Instead we use active camera control
and the probability distribution of (4). This reduces the number of required
relative poses and totally avoids the chance of outlier point correspondences.

The final calibration is represented by a relative pose graph where each ver-
tex represents a camera and each edge represents the relative pose between two
cameras. Two vertices i and j are simple connected if there exists a path between
them and they are called triangle connected if there exists a path of triangles
between them [7]. The important difference is that only triangle connected sub-
graphs have a consistent scaling. In the beginning this graph has no edges. The
following procedure is repeated until the graph is triangle connected.

We search for the camera triangle (i, j, k) which has the highest product
of the probabilities of two of its relative poses p (Ri,j , ti,j) p (Rj,k, tj,k) and no
edge between the two vertices i and k. We now simultaneously estimate the third
relative pose Ri,k, ti,k and all translation scale factors of the triangle. This is
done by rotating camera i and k simultaneously around the plane normal of the
camera triangle. In the beginning both cameras look into the direction defined
by the translation ti,j . Now, we search for the rotation angle α that

max
α

p (Ri,k, ti,k (α)) with Ri,k
def= Rj,kRi,j and ti,k (α) def= Rj,kti,j + λstj,k ,

(6)
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Fig. 4. Situations that can occur when inserting a camera triangle into the relative
pose graph. The inserted triangle a has doted lines. Existing triangles are gray and
share the same letter if they are in a triangle connected subgraph.

where we assume ‖ti,j‖2 = ‖tj,k‖2, the scale factor λs
def= sin (α) / sin (Π − α− β)

arises from the law of sines and β def= arccos
((

tTi,jtk,j
)
/ (‖ti,j‖2‖tk,j‖2)

)
is the an-

gle between the translation vectors ti,j and tk,j . The probability p (Ri,k, ti,k (α))
is the probability of (4). There will be only one rotation angle α where the two
cameras i and k look exactly into the same direction. For a clearer understanding
the described relations are visualized in Fig. 3. The procedure is repeated in the
opposite direction which results in estimating the inverse relative pose Rk,i, tk,i.
Again, we decide between these two poses based on their probability.

If the relative poses and scales of a camera triangle are known, it is inserted
into the graph. We distinguish four different situations when inserting a new
relative pose triangle into the relative pose graph. These four situations are
illustrated in Fig. 4. The first situation is the trivial case of inserting a single
triangle without conflicting edges. In the second case the inserted triangle shares
a common edge with a triangle connected subgraph. This situation requires a
rescaling of the triangle. The scale factor is defined by the relation between the
translation lengths of the two common edges (the translation direction of these is
identical). The third case creates a triangle connection between two prior simple
connected parts of the graph. This requires rescaling the triangle and one of the
two graph parts. The relative pose triangle in the fourth case cannot be inserted
because it is impossible to correctly rescale the participating subgraphs. After
inserting a camera triangle into the graph we need to check if two edges of some
camera triangle are in the same triangle connected sub graph. In this case the
relative pose of the third edge results from the poses of these two edges.

We note that several single camera triangles can be inserted before some of
them build a triangle connected subgraph which reduces error propagation.

4 Experiments and Results

4.1 Experimental Setup

In our experiments we use a multi-camera system consisting of six Sony DFW-
VL500 cameras with a resolution of 640 × 480 pixels. Each camera is mounted
on a Directed Perception PTU-46-17.5 pan-tilt unit. We use a slightly modified
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version of this pan-tilt unit which allows to mount the camera quite close to the
intersection of the pan and tilt axes (Fig. 1, right). We test our method on a
total of 30 calibrations with 5 different setups of the multi-camera system. An
example setup can be found in Fig. 1 (left). In order to generate ground truth we
use the calibration software of the University Kiel [16] which uses a pattern based
calibration method [1] with non-linear refinement. The intrinsic parameters of
five zoom steps of each camera are estimated using the self-calibration method
of [3]. The radial distortion of the images is corrected using the two parameter
radial distortion model of [17]. As explained in Section 3.3, we can only calibrate
up to a common scale factor. In order to compare our calibration with the ground
truth, we scale our calibration result by the median of the factors ‖tGT

i,j ‖2/‖ti,j‖2
of all camera pairs i, j, where tGT

i,j is the ground truth translation.
For the common field of view detection we use λd = 0.5 and mr = 71 as

suggested by Brückner et al. [12]. Each camera records 20 images in order to
cover its complete environment. For each camera pair we use the mi = 20 image
pairs with the highest image similarity. From each of these image pairs 25 point
correspondences are extracted using a nearest neighbor rejection threshold of
0.8 as suggested by Lowe [11]. This results in a maximum of mc = 500 point
correspondences for each camera pair. We use 50000 RANSAC iterations and an
inlier threshold of 0.005 for the initial relative pose estimation. For each camera
pair we save the mp = 5 best poses according to the number of inliers and a
minimum rotation and translation difference of θR = θt = 2◦. We set the inverse
scale parameter λe of the exponential distribution in (4) to 0.005. The choice
of this parameter is not that critically as additional experiments show. For the
matching during the optimization process we use a stricter nearest neighbor
rejection threshold of 0.6.

4.2 Results

We present our calibration results in Fig. 5 using box plots (the box depicts
the 0.25 and 0.75 quantiles, the line in the middle is the median and crosses
are outliers, for further details please refer to [18]). In the upper row we show
the rotation errors in degree. The bottom row displays the translation errors in
degree or millimeters depending on the calibration step. We plot the errors of the
relative poses for the initial calibration (initial, Section 3.1), after the evaluation
and optimization step (opt., Section 3.2) and of the absolute camera poses for
the final calibration (final, Section 3.3). We also distinguish whether we used
the five zoom steps (zoom) or not (no zoom). For comparison we also present
results of the passive uncertainty based calibration method of Bajramovic and
Denzler [7] (passive). We manually rotate the cameras to ensure that they share
a common field of view for this passive method.

The results show that each step refines the calibration and outliers are re-
jected. We achieve a final median rotation error of 0.9 degree and a median
translation error of about 68 millimeters for the method using zoom. In the case
of no zoom the results are slightly worse. In comparison to the passive approach
we reach a similar rotation and a much lower translation error.
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Fig. 5. Top: the rotation error during the different calibration steps in degree. Bot-
tom: the translation error in degree or millimeters depending on the calibration step.
For comparison we also present the results of the passive calibration approach of [7]
(passive). The results of the initial calibration and some outliers are truncated.

Since we assume the pan and tilt axes to be identical to the Y and X axes
of the camera, we also investigated the rotation error between the pan-tilt unit
and the camera. We note that a (small) rotation between the camera and the
pan-tilt unit has a higher impact on normalized point coordinates extracted from
zoomed images. In order to rate the magnitude of this rotation we estimate it
with the hand-eye calibration method of Tsai and Lenz [19]. The mean rotation
between pan-tilt unit and camera in our experiments is 0.995◦.

We also investigate the repeatability of the camera zoom by switching be-
tween the zoom steps and calibrating the intrinsic parameters several times. The
calculated coefficients of variation for the intrinsic parameters lie in a magnitude
of 10−3 which indicates good repeatability.

Calibrating a multi-camera system consisting of six cameras takes about 70
minutes in the current (serial) implementation. However, since many steps could
be parallelized the runtime could be improved significantly.

5 Conclusions

We presented a method which uses active camera control for calibrating a multi-
camera system consisting of pan-tilt zoom cameras. In order to evaluate a relative
pose we introduced a probabilistic measure (4) which incorporates image and
geometric information. Relative poses were optimized by rotating each camera
pair in a way that simplifies the problem of extracting correct point correspon-
dences. The final calibration process was based on these relative poses and their
probabilities. The scale factors in each camera triangle were estimated using
our probabilistic measure and active camera control. This allowed to reduce the
number of necessary relative poses. Our experiments demonstrated the robust-
ness and high accuracy of our approach. We achieved a median rotation error
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of 0.9◦ and a median translation error of 68 mm (Fig. 5). In our future work we
hope to improve our calibration by considering the hand-eye calibration.
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