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Abstract. Gaussian processes are a powerful tool for regression prob-
lems. Beside computing regression curves using predictive mean values,
the uncertainty of the estimations can be computed in terms of predictive
variances. However, the complexity of learning and testing the model is
often too large for practical use. We present an efficient approximation of
the Gaussian process regression framework leading to reduced complex-
ities of both runtime and memory. The idea is to approximate Gaussian
process predictive mean and variance using a special diagonal matrix
instead of the full kernel matrix. We show that this simple diagonal ma-
trix approximation of the Gaussian process predictive variance is a true
upper bound for the exact variance. Experimental results are presented
for a standard regression task.

1 Introduction

The goal of regression is to model the dependencies between data points and
output values. A non-parametric approach is Gaussian process regression [5],
where the resulting model can be fully described using the already observed
data. Given a fixed set of training samples X with corresponding output values
y, the assumption of Gaussian process regression is that latent functions f are
drawn from a Gaussian process prior with mean function µ(·) and covariance
function κ(·, ·). These latent functions map each input x ∈ X to its output value
y(x) = f(x) + ε while considering induced noise ε for regularization. A typical
noise model is the Gaussian noise model with zero mean and noise variance σ2

n ,
i.e., ε ∼ N (0, σ2

n).
With Gaussian process regression, prediction can be done in a Bayesian man-

ner by marginalizing over latent functions f. Due to the Gaussian noise model,
we obtain a Gaussian distribution for the output value y∗ of a sample x∗ given
the training data: y∗ | X,y,x∗ ∼ N (µ∗, σ

2
∗), whose moments can be computed

in closed form (assuming a zero mean Gaussian process prior):

µ∗ = kT
∗
(
K + σ2

nI
)−1

y and (1)

σ2
∗ = k∗∗ − kT

∗
(
K + σ2

nI
)−1

k∗ + σ2
n . (2)
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Here, K = κ(X,X) is the covariance (kernel) matrix of the training data, k∗ =
κ(X,x∗) are similarities between the test sample and the training set, and k∗∗ =
κ (x∗,x∗) is the self-similarity of x∗. A more detailed description of Gaussian
process regression can be found in [5].

An obvious drawback of Gaussian process regression is the complexity of
learning and computing predictive variances, which is cubic and quadratic in the
number of training samples, respectively. This is mainly caused by the products
with the inverse matrix in (1) and (2). Moreover, the demanded memory is
quadratic in the number of training samples as well, since the whole kernel matrix
or the representation of its inverse has to be stored in memory. To overcome these
limitations, we present an efficient approximation of Gaussian process regression
in this article leading to time and memory efficient methods for learning and
computing predictive variances.

The remainder of this paper is organized as follows. Related work on approx-
imations of Gaussian process techniques is summarized in Sect. 2. Afterwards,
we present the approximation of predictive variances in Sect. 3.1 and verify that
it is a true upper bound of the exact computation (Sect. 3.2). How to transfer
our approximation idea to computations of the predictive mean is carried out in
Sect. 3.3. Results in a standard regression task are shown in Sect. 4. Conclusions
can be found in the last section.

2 Related Work

A lot of work has been investigated in developing sparse approximations of Gaus-
sian process regression and an overview of various techniques can be found in [4].
The authors introduce a unifying scheme based on latent inducing variables and
the following sparse approximation methods can be derived within this scheme:

– Subset of Regressors (SoR),
– Deterministic Training Conditional (DTC),
– Fully Independent Training Conditional (FITC), and
– Partially Independent Training Conditional (PITC).

The Subset of Data (SoD) method is also mentioned in [4] but does not fall
inside their general scheme. This is the simplest possible but less sophisticated
sparse approximation. For comparisons, we apply the FITC approximation orig-
inally proposed by [7] as a baseline method representing the state-of-the-art. An
extensive overview of approximating Gaussian processes in binary classification
tasks with noise models more complex than the Gaussian noise model is given
in [3]. The authors focus on

– Laplace Approximation (LA),
– Expectation Propagation (EP),
– Variational Bounds (VB),
– Factorial Variational Method (FV),
– KL-Divergence minimization, and



– sampling methods using Markov Chain Monte Carlo (MCMC) techniques.

In the following section, we present a simple diagonal approximation of the kernel
matrix to speed up Gaussian process regression.

3 Diagonal Kernel Matrix Approximations

In this section, we introduce the main idea of our approximation for Gaus-
sian process regression. After presenting how to compute the approximation in
Sect. 3.1, we verify in Sect. 3.2 that our variance approximation is a true upper
bound of the exact predictive variance and derive bounds for the approximation
error. Finally, we show how to transfer our idea to approximate the Gaussian
process predictive mean in Sect. 3.3.

3.1 Approximating the Gaussian Process Predictive Variance

The key idea of our approximation is speeding up Gaussian process predictive
variance computations by using a diagonal matrix instead of the full kernel
matrix to allow for efficient matrix inversion. This approximation has a quadratic
runtime during learning and a linear runtime in the test step with only linear
memory demand for both steps. Usually, the memory demand is quadratic, since
at least once the whole kernel matrix has to be kept in memory. Note that we
have to store all training samples with a linear memory demand in both cases,
if the dimension of the features is fixed. Instead of calculating (2), we compute:

σ̃2
∗ = k∗∗ − kT

∗ D̃−1k∗ + σ2
n (3)

with D̃ being a diagonal matrix whose elements are given by (D̃)jj = 1T(K +

σ2
nI)·j =

∑N
i=1(K + σ2

nI)ij . The number of training samples is denoted with
N . During learning, we need time O(N2) to compute the values of the matrix
D̃ whereas learning with the exact Gaussian process regression model takes
time O(N3). For a test sample we need O(N) time to compute the variance
approximation instead of O(N2) to compute the exact variance. Furthermore,
our variance approximation needs memory only linear in the number of training
samples during both learning and testing, since each element of the diagonal
matrix D̃ can be calculated one after another. In the following section, we show
that our variance approximation is an upper bound for the exact variance and
also present bounds for the approximation error.

3.2 Upper and Lower Bounds of the Variance Approximation

A trivial bound for our variance approximation can be derived by noting that
D̃ as well as D̃−1 are diagonal matrices with positive entries and are therefore
positive definite. This fact directly leads to σ̃2

∗ ≤ k∗∗ + σ2
n

·
= ub. Tighter bounds

can be obtained by considering the eigenvalues of D̃, which are directly the
elements on the main diagonal.



Proposition 1 (Bounds for the variance approximation). The proposed
variance approximation σ̃2

∗ = k∗∗ − kT
∗ D̃−1k∗ + σ2

n is bounded as follows:

k∗∗ + σ2
n − (λmin(D̃))−1‖k∗‖2 ≤ σ̃2

∗ ≤ k∗∗ + σ2
n − (λmax(D̃))−1‖k∗‖2 (4)

with λmax(D̃) = max1≤j≤N

∑N
i=1(K̃)ij and λmin(D̃) = min1≤j≤N

∑N
i=1(K̃)ij

denoting the maximum and minimum eigenvalue of the diagonal matrix D̃. We
refer to the lower and upper bound in (4) as lb∗ and ub∗, respectively.

Proof. We can prove this proposition by showing that:

(λmax(D̃))−1‖k∗‖2 ≤ kT
∗ D̃−1k∗ ≤ (λmin(D̃))−1‖k∗‖2 (5)

holds for arbitrary k∗. This directly follows from:

λmin(D̃
−1)‖k∗‖2 ≤ kT

∗ D̃−1k∗ ≤ λmax(D̃
−1)‖k∗‖2 , (6)

where λmin(D̃
−1) = (λmax(D̃))−1 and λmax(D̃

−1) = (λmin(D̃))−1 denote the min-
imum and maximum eigenvalue of the diagonal matrix D̃−1. �

To verify that our approximation is a true upper bound for the exact variance,
we need the following lemma stating that D̃− K̃ is positive semidefinite.

Lemma 1 (D̃ − K̃ is positive semidefinite). If K̃ is the regularized ker-
nel matrix obtained with a nonnegative kernel and D̃ is a diagonal matrix with
(D̃)jj =

∑N
i=1(K̃)ij, the matrix D̃− K̃ is positive semidefinite.

Proof. The proof is given in [2, Proposition 1, page 23], where it is shown that
the graph Laplacian L = D−K is positive semidefinite. �

Now we can show that our approximation is a true upper bound for the exact
variance or, vice versa, the exact variance is a lower bound for our variance
approximation.

Theorem 1 (Upper bound for the Gaussian process predictive vari-
ance). Our variance approximation σ̃2

∗ = k∗∗ − kT
∗ D̃−1k∗ + σ2

n is a true upper
bound for the exact Gaussian process predictive variance σ2

∗ = k∗∗−kT
∗ K̃−1k∗ +

σ2
n for a positive definite and nonnegative kernel. Furthermore, the error σ̃2

∗−σ2
∗

made by the approximation is O(‖k∗‖2).

Proof. We have to verify that σ̃2
∗ ≥ σ2

∗. Equivalently, we show that σ̃2
∗ − σ2

∗ ≥ 0.
This inequality reduces to kT

∗ K̃−1k∗ − kT
∗ D̃−1k∗ = kT

∗ (K̃−1 − D̃−1)k∗ ≥ 0 and
finally, we have to show that the matrix M̃ = K̃−1−D̃−1 is positive semidefinite
if the kernel is positive definite and nonnegative. Since D̃−1 and thus D̃ is positive
semidefinite as well as D̃− K̃ (Lemma 1), we can apply Theorem 18.3.4 of [1, p.
433-434] to prove that M̃ = K̃−1− D̃−1 is positive semidefinite. Using the same
arguments as in Proposition 1 leads to the following bounds:

λmin(M̃)‖k∗‖2 ≤ kT
∗M̃k∗ ≤ λmax(M̃)‖k∗‖2 . (7)

As a direct result, the approximation error is in O(‖k∗‖2). �



The theorem shows that the approximation error depends on ‖k∗‖2, which
can be seen as a modified Parzen estimate with quadratic kernel terms. For
samples similar to the training data we get a high approximation error whereas
for outliers the error is small.

3.3 Approximating the Gaussian Process Predictive Mean

Since our proposed variance approximation leads to substituting the full matrix
in (2) by a diagonal matrix, we can do the same substitution in the calculation
of the Gaussian process predictive mean. We obtain an approximate predictive
mean µ̃∗ defined as:

µ̃∗ = kT
∗ D̃−11 . (8)

The asymptotic runtime for computing the mean value of a test sample remains
O(N) and thus linear in the number of training samples, but the complexity for
learning the model can be reduced from O(N3) to O(N2).

4 Experiments in Standard Regression

We compare our approximation with the exact calculation and the FITC ap-
proximation of [7] in a standard regression task. For a standard regression task
on 1D inputs, the results are shown in Fig. 1. We varied the scale of the Gaussian
kernel and fixed the noise variance of the Gaussian noise model: σ2

n = 0.1. Each
fourth point is used as an inducing input in the FITC approximation.

Compared to the exact calculation and the FITC approximation, we observe
a smoother predictive mean curve of our approximation at each scale. The de-
veloping of predictive variances in the exact case and for our approximation is
similar and we observe that our approximate variance is an upper bound for
the exact one. Due to the sparsity of the FITC method, its predictive variances
strongly vary in local areas, especially for a small σ. In contrast, our approxi-
mation takes each training input into account leading to smooth results while
reducing the computational complexity compared to exact calculations.

5 Conclusions

We have shown that simple diagonal approximations of kernel matrices allow
for efficient Gaussian process regression with impressive results in standard re-
gression tasks. Using our approximation, the runtime complexity as well as the
memory demand during learning and testing can be reduced by one order with
respect to the number of training samples. Additionally, computing the approx-
imate predictive variance is possible in linear time only and we have shown that
this approximation is a true upper bound for the exact variance.

We assume that our approximation can be used in various applications, since
it is simple in spirit, easy to implement, and does not limit the flexibility of the
model, while saving time and memory. This is especially helpful in large-scale
scenarios similar to [6], where Gaussian process regression can be successfully
used for classification in visual recognition tasks.



−10 0 10 20
−1.5

−1

−0.5

0

0.5

1

1.5
Exact Gaussian Process Regression

x

y

−10 0 10 20
−1.5

−1

−0.5

0

0.5

1

1.5
FITC approximation

x

y

−10 0 10 20
−1.5

−1

−0.5

0

0.5

1

1.5
Our fast approximation

x

y

−10 0 10 20
−1.5

−1

−0.5

0

0.5

1

1.5
Exact Gaussian Process Regression

x

y

−10 0 10 20
−1.5

−1

−0.5

0

0.5

1

1.5
FITC approximation

x

y

−10 0 10 20
−1.5

−1

−0.5

0

0.5

1

1.5
Our fast approximation

x

y

−10 0 10 20
−1.5

−1

−0.5

0

0.5

1

1.5
Exact Gaussian Process Regression

x

y

−10 0 10 20
−1.5

−1

−0.5

0

0.5

1

1.5
FITC approximation

x

y

−10 0 10 20
−1.5

−1

−0.5

0

0.5

1

1.5
Our fast approximation

x

y

Fig. 1. Predictive distributions (mean and standard deviation) for Gaussian process
regression with 1D inputs. Rows correspond to different scales of the Gaussian kernel:
(top) σ = 0.25, (middle) σ = 0.5, (bottom) σ = 0.75.
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