
Deep Learning is not a Matter of Depth
but of Good Training

1st Björn Barz
Computer Vision Group

Friedrich Schiller University Jena
Jena, Germany

bjoern.barz@uni-jena.de

2nd Joachim Denzler
Computer Vision Group

Friedrich Schiller University Jena
Jena, Germany

joachim.denzler@uni-jena.de

Abstract—In the past few years, deep neural networks have
often been claimed to provide greater representational power
than shallow networks. In this work, we propose a wide, shallow,
and strictly sequential network architecture without any residual
connections. When trained with cyclical learning rate schedules,
this simple network achieves a classification accuracy on CIFAR-
100 competitive to a 10 times deeper residual network, while
it can be trained 4 times faster. This provides evidence that
neither depth nor residual connections are crucial for deep
learning. Instead, residual connections just seem to facilitate
training using plain SGD by avoiding bad local minima. We
believe that our work can hence point the research community
to the actual bottleneck of contemporary deep learning: the
optimization algorithms.

Index Terms—deep learning, stochastic gradient descent, learn-
ing rate schedule, residual networks, cyclical learning rates

I. INTRODUCTION

In the past few years, deep learning using convolutional
neural networks (CNNs) has continuously advanced the state-
of-the-art in most image processing and other machine learn-
ing applications: The first notable success of modern deep
learning was in 2012, when a CNN often called AlexNet [1]
won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). This network, which is composed of 8 trainable
hidden layers, was outperformed two years later by the so-
called VGG architecture [2], which roughly doubles the num-
ber of trainable layers to between 16 and 19.

Likewise, VGG was surpassed in 2015 by deep residual
networks (ResNets) [3] with up to 152 trainable layers. To
avoid vanishing gradients during backpropagation through all
those layers, ResNet contains skip-connections that add the
output of earlier layers to that of some later layers. On smaller
benchmark datasets such as CIFAR-100 [4], where training
does not take weeks, the trend of increasing the number of
hidden layers has continued and lead to ResNets with up to
1001 layers [5].

The paradigm of creating CNNs as deep as possible arises
from the fact that the degree of abstraction of the learned
image features generally increases with the depth of the net-
work: The first layer learns to recognize simple visual features

This work was supported by the German Research Foundation as part of
the priority programme “Volunteered Geographic Information: Interpretation,
Visualisation and Social Computing” (SPP 1894, contract DE 735/11-1).

such as edges, while activations of later layers often refer
to semantic object parts [6]. Therefore, it is often postulated
that the abstraction and generalization capability of CNNs is a
monotonically increasing function of its depth, i.e., the number
of trainable layers [2], [3], [5].

However, there also are other important properties of CNNs
such as their width (i.e., the number of channels per layer) and
the optimization algorithm used during training. Both VGG
and ResNet have originally been trained using stochastic gra-
dient descent (SGD) with momentum, starting with a manually
selected learning rate that is reduced by a factor of 10 each
time the performance on a held-out validation set reaches a
plateau [2], [3].

In this work, we show that a shallow but wide network with
as few as 11 trainable layers and no residual connections can
achieve the same performance on CIFAR-100 as a thin deep
residual network with 110 parametric layers when trained us-
ing a more sophisticated learning rate schedule. Moreover, our
network requires less run-time during inference and training
due to its reduced depth.

This finding provides evidence that the depth of a CNN
is less important than commonly thought. Intuitively, a certain
depth is required for sufficient abstraction capability, but more
layers do not seem to contribute significantly to this aspect.

The main contributions of our work are as follows:

1) We propose a novel strictly sequential CNN architecture
with 11 layers that can achieve a performance competi-
tive to a 10 times deeper ResNet-110 on CIFAR-100.

2) We compare the effects of two recent learning rate
schedules (CLR and SGDR) on sequential and residual
networks.

3) This leads to the insight, that ResNets are not necessar-
ily much more powerful than wide shallow sequential
networks, but just easier to train with plain SGD.

Although our experiments are not meant to beat the current
state-of-the-art in image classification, we are convinced that
this is an interesting finding and hope that our work can help
pointing the research community to the real bottleneck of
deep learning, which is neither insufficient depth nor a lack
of architectural complexity, but poor optimization algorithms.



II. RELATED WORK

The effects of depth and width of residual networks on their
performance have already been investigated by Zagoruyko and
Komodakis [7], who have shown that increasing the width of
ResNets while decreasing their depth improves classification
performance. They state “that the main power of deep residual
networks is in residual blocks, and that the effect of depth is
supplementary” [7, p. 3].

Our findings take this insight a step further and suggest that
the residual connections do not increase the representational
power of the network either, but just facilitate training using
plain SGD. However, strictly sequential wide shallow networks
without residual connections can achieve similar performance
when trained with more sophisticated optimization algorithms.

Our work is furthermore similar in spirit to the analysis
of Melis et al. [8], who have shown that rather shallow
LSTMs can outperform deeper and more recent neural lan-
guage models thanks to thorough hyper-parameter tuning and
regularization.

We present analogous findings for the computer vision
domain, but achieve this by focusing on sophisticated learning
rate schedules instead of hyper-parameters.

III. NETWORK ARCHITECTURE

The convolutional part of our wide shallow CNN is com-
posed of 4 sequential blocks of convolutional units, as outlined
in Fig. 1. Each unit consists of a convolutional layer followed
by a ReLU activation and batch normalization [9].

The first block consists of 2 units with 64 channels each, the
second and third block of 3 units with 128 and 256 channels,
respectively, and the last block of a single unit with 512
channels. Sub-sampling by a factor of 2 along the spatial axes
is performed between the blocks using average pooling and
the last block is followed by global average pooling.

The subsequent fully-connected part of the network consists
of a fully-connected layer with 512 channels followed by
ReLU and batch normalization, and a final fully-connected
layer with softmax activation, whose number of channels
equals the number of classes.

This architecture is similar to the VGG networks [2], but
with a few important differences:

1) We use batch normalization [9] between layers to miti-
gate the problem of exploding and vanishing gradients.

2) We use average pooling instead of maximum pooling
between convolutional blocks.

3) Like ResNet [3], we use global average pooling after
the last convolutional layer instead of fully-connected
pooling. This enables the network to handle input images
of varying size.

IV. OPTIMIZATION

Both VGG [2] and ResNet [3] have originally been trained
using SGD with momentum and a simple learning rate
schedule: Starting with a small initial learning rate to avoid
exploding gradients (“warm-up phase”), the learning rate is set
to a higher value after a few iterations and then decreased by

AvgPool (2, 2) 

Conv (3×3, 64) 

Conv (3×3, 64) 

Conv (3×3, 128) 

Conv (3×3, 128) 

Conv (3×3, 128) 

AvgPool (2×2) 

Conv (3×3, 256) 

Conv (3×3, 256) 

Conv (3×3, 256) 

AvgPool (2×2) 

Conv (3×3, 512) 

GlobalAvgPool 

FC (512) 

FC (100) 

Softmax 

32×32×64 

16×16×64 

16×16×128 

8×8×128 

8×8×256 

4×4×256 

4×4×512 

512 

512 

Class Scores 

100 

Image 

32×32×3 

Fig. 1. Architecture of our wide shallow sequential network. All convolutional
and the first fully-connected layer are followed by a ReLU activation and
Batch Normalization, which we omitted for clarity. Trainable layers are set
in bold font.

a factor of 10 either after a handpicked number of iterations
or when the performance on a held-out validation set has not
improved significantly during the last few epochs.

However, this approach is prone to getting trapped in bad
local minima, since the learning rate is only decreased, but
never increased. Two approaches have recently been proposed
for overcoming this issue by periodically increasing and de-
creasing the learning rate. These are reviewed in the following
subsections and depicted in Fig. 2, along with the schedule that
He et al. [3] used for training ResNet-110.



Fig. 2. Different Learning Rate Schedules

A. Cyclical Learning Rates (CLR)
Cyclical Learning Rates (CLR) [10] start with a small base

learning rate lrmin and increase it linearly during a fixed
number s of iterations (“step size”) up to a certain maximum
learning rate lrmax. Thereafter, the learning rate is decreased
again over the same number of iterations until reaching the
base learning rate. After that, the next cycle of increasing and
decreasing the learning rate begins. Formally, the learning rate
clr(t) at iteration t is

clr(t) = lrmin+

(lrmax − lrmin) ·
(
1−

∣∣∣∣ ts − 2

⌊
t

2s

⌋
− 1

∣∣∣∣) . (1)

The motivation behind increasing the learning rate from
time to time is to enable the learning process to escape from
bad local minima.

The authors also proposed a variant where the maximum
learning rate is reduced after each cycle. In this work, we
achieve this in a slightly different way by applying a global
learning rate decay so that the maximum learning rate at the
end of the training is δ times lower than the initial maximum
learning rate:

c̃lr(t) =
clr(t)

1 + (δ − 1) · t
tmax

, (2)

where tmax is the maximum number of iterations after which
the training procedure is terminated.

B. Stochastic Gradient Descent with Warm Restarts (SGDR)
A similar approach is taken by SGD with Warm Restarts

(SGDR) [11]. In contrast to CLR, the learning rate is not
decreased linearly but according to cosine annealing. It is
furthermore not increased smoothly at the end of each cycle,
but in an instant. Formally, the learning rate sgdr(ε) during
epoch ε is

sgdr(ε) = lrmin+

1

2
(lrmax − lrmin)

(
1 + cos

(
εi
Si
π

))
, (3)

where Si is the length of the current cycle and εi is the number
of epochs passed since the beginning of the cycle.

Starting with a certain initial cycle length S0, the length
Si of cycle i results from multiplication of the length of the
previous cycle with a constant factor:

Si = σ · Si−1 . (4)

Since SGDR starts with a very high learning rate, we
combine it with gradient clipping [12] to avoid exploding
gradients: The maximum norm of the gradients propagated
back through the network is restricted to 10.0.

V. EXPERIMENTS

A. Setup

We compare the performance of our strictly sequential
VGG-like network architecture and deep residual networks
(ResNets) trained with different learning rate schedules on
the CIFAR-100 dataset. CIFAR-100 is a heavily benchmarked
dataset consisting of images from 100 different classes. Each
class comprises 500 training and 100 test images, leading to a
total amount of 50k training and 10k test images. All images
are in RGB color format and of size 32× 32 pixels.

We compare 3 different learning rate schedules for training
our plain 11-layer network, referred to as “Plain-11” in the fol-
lowing, and ResNet-110, which has ten times more parametric
layers:

• The handcrafted learning rate schedule used by He et al.
[3] for training ResNet-110: Starting with a learning rate
of 0.01 to avoid divergence, the learning rate is increased
to 0.1 after the first epoch and then divided by 10 after
80 and 120 epochs. Training is terminated after a total of
164 epochs.

• CLR with a step size s corresponding to 10 epochs (i.e.,
s is the number of batches per epoch multiplied with 10),
a minimum learning rate of lrmin = 10−5, a maximum
learning rate of lrmax = 0.1 and a final learning rate
decay of δ = 10.



TABLE I
CIFAR-100 VALIDATION ERROR OF DIFFERENTLY TRAINED CNNS.

Architecture Time / Epoch Schedule Epochs Err. Rate

ResNet-110 175 s

SGD 164 26.51 %

CLR 160 27.78 %

SGDR 180 25.98 %

Plain-11 (ours) 42 s

SGD 164 28.48 %

CLR 160 27.26 %

SGDR 180 27.09 %

• SGDR with a base period length of S0 = 12 epochs,
which is doubled after each period (σ = 2). The min-
imum learning rate is lrmin = 10−6 and the maximum
learning rate is lrmax = 0.1.

The number of training epochs for CLR and SGDR has been
chosen to be near 164 for being comparable with the ResNet
schedule, but so that the learning rate arrives at lrmin during
the last epoch. This is important, because the performance of
the network often behaves unstable while training with higher
learning rates.

We use a mini-batch size of 100 images—as opposed to the
most commonly used batch-size of 128—because it divides the
total amount of training images evenly.

B. Comparison of Architectures

For all combinations of network architectures and learning
rate schedules, we trained 3 networks with different random
weight initializations and report the average error rate on the
test set in Table I. It can be seen that our strictly sequential
network does not achieve the performance of ResNet-110
when trained with the same hand-tuned learning rate schedule.
Using SGDR, however, improves its validation error rate by
5%, while the improvement for ResNet-110 is only 2%. This
indicates that the residual connections used in ResNet already
facilitate training, so that different learning rate schedules do
not add much benefit.

On the other hand, more sophisticated training procedures
allow us to train a shallow sequential network that achieves
competitive performance compared to ResNet-110. At the
same time, the architecture of our model is less complex and
can be trained 4 times faster, which is an important aspect in
the compute-intensive realm of deep learning.

C. Comparison of CLR and SGDR

It is also worth noting that SGDR achieved a better per-
formance than CLR for both network architectures, while
CLR even performed worse than the handcrafted learning rate
schedule for training ResNet-110. Of course, our experiments
do not include a sufficient number of network architectures and
datasets to claim that one method for scheduling learning rates
would perform better than the other, but it at least provides
some evidence that SGDR is a good choice.

On the other hand, CLR provides more flexibility for
choosing the total number of training epochs, since all cycles

have the same, comparatively small length. Since the length
of the SGDR periods grows exponentially, one cannot just add
a few but only a lot more training epochs when using SGDR.

VI. CONCLUSIONS

Wide residual networks [7] have already demonstrated that
the depth of a CNN is much less important than previously
thought and that a wide shallow ResNet can outperform thin
deep ResNets significantly. We have shown that a plain VGG-
like network without any residual connections can achieve the
same performance as a 10 times deeper ResNet when using
sophisticated learning rate schedules such as CLR or SGDR,
while being 4 times faster to train.

This provides evidence that the skip-connections used in
ResNets do not increase the representational power of the
network, but rather lead to loss functions with fewer bad local
minima and hence facilitate learning using SGD.

The main problem of modern deep learning is, thus, neither
insufficient depth nor a lack of structural complexity, but
the deficiencies of the ubiquitous stochastic gradient descent
(SGD) optimization algorithm and its many variants, which
easily get stuck in bad local minima.

While there is a large amount of ongoing work about new
network architectures, types of layers, and activation functions,
we believe that a large fraction of the potential of most neural
networks is wasted due to poor optimization algorithms. More
complex learning rate schedules such as the cyclical learning
rates [10], [11] discussed in this paper or the parameter-
specific learning rates used by AdaGrad [13], RMSProp [14],
and Adam [15] are a step towards getting to the root of the
problem, but are still based on SGD and backpropagation.

While the shape of the categorical cross-entropy loss func-
tion might be one part of the problem, Nguyen et al. [16] have
shown that even in the face of convex loss functions, SGD
makes steep improvements in the beginning, but then stagnates
at a sub-optimal state. Thus, the next big breakthrough in
deep learning might rather be achieved by thinking out of the
box and applying completely novel optimization algorithms
for training artificial neural networks.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems (NIPS), 2012, pp. 1097–1105.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[4] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep resid-
ual networks,” in European Conference on Computer Vision (ECCV).
Springer, 2016, pp. 630–645.

[6] M. Simon, E. Rodner, and J. Denzler, “Part detector discovery in deep
convolutional neural networks,” in Asian Conference on Computer Vision
(ACCV), 2014, pp. 162–177.

[7] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in British
Machine Vision Conference (BMVC), 2016.

[8] G. Melis, C. Dyer, and P. Blunsom, “On the state of the art of evaluation
in neural language models,” arXiv preprint arXiv:1707.05589, 2017.



[9] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning (ICML), 2015, pp. 448–456.

[10] L. N. Smith, “Cyclical learning rates for training neural networks,” in
IEEE Winter Conference on Applications of Computer Vision (WACV).
IEEE, 2017, pp. 464–472.

[11] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” in International Conference on Learning Representations
(ICLR), 2017.

[12] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in International Conference on Machine
Learning (ICML), 2013, pp. 1310–1318.

[13] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[14] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
networks for machine learning, vol. 4, no. 2, pp. 26–31, 2012.

[15] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[16] L. M. Nguyen, N. H. Nguyen, D. T. Phan, J. R. Kalagnanam, and
K. Scheinberg, “When does stochastic gradient algorithm work well?”
arXiv preprint arXiv:1801.06159, 2018.


	Introduction
	Related Work
	Network Architecture
	Optimization
	Cyclical Learning Rates (CLR)
	Stochastic Gradient Descent with Warm Restarts (SGDR)

	Experiments
	Setup
	Comparison of Architectures
	Comparison of CLR and SGDR

	Conclusions
	References

