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Abstract—We approach the task of detecting anomalous or
extreme events in multivariate spatio-temporal climate data using
an unsupervised machine learning algorithm for detection of
anomalous intervals in time-series. In contrast to many existing
algorithms for outlier and anomaly detection, our method does
not search for point-wise anomalies, but for contiguous anoma-
lous intervals. We demonstrate the suitability of our approach
through numerous experiments on climate data, including detec-
tion of hurricanes, North Sea storms, and low-pressure fields.

I. INTRODUCTION

The identification of anomalous intervals in time-series
data is an important task in a variety of domains and of
particular interest when dealing with climate data, since such
anomalies usually relate to extreme weather events like heat
waves, droughts, or cyclones, which often entail significant
destruction, insurance costs or even deaths. Such events are
relevant from a retrospect as well, e.g., for studying regularities
or long-term trends of weather phenomena. A well-known
example for this is the discovery of the correlation between the
El Niño weather phenomenon and extreme surface pressures
over the equator by Gilbert Walker [1] during the early 20th

century through the analysis of extreme events in time-series
of climate data.

However, manually locating anomalies and rare events in
large-scale multivariate and perhaps even spatio-temporal data
is like looking for a needle in a haystack and an even more
difficult task for humans if the data consist of multiple different
variables.

In order to automate the localization of extreme events,
we propose to apply a novel machine learning algorithm
for detection of anomalous intervals to the task of detecting
storms and hurricanes using measurements of marine climate
variables. Previous works in the field of anomaly detection
have primarily focused on detecting single isolated points in
the data as outliers, i.e. measurement errors or noise [2]–[4].
Anomalies driven by natural processes, however, are more
likely to occur during a longer period of time and may even
be unidentifiable by looking at a single measurement, but only
by a contiguous collection of samples that is anomalous as a
whole (a so-called collective anomaly). Thus, analysts will
intuitively be searching for anomalous intervals in the data
instead of anomalous points and the algorithm assisting them

Fig. 1. Schematic illustration of the principle of the MDI algorithm: The
distribution of the data in the inner interval I is compared with the distribution
of the remaining time-series in the outer interval Ω.

should do so as well. In addition, applying point-wise anomaly
detection methods to large data sets will most likely lead
to an unmanageable amount of detections. Grouping nearby
detections is not a good approach either, since the anomaly
scores of the samples may vary widely, which will lead to
disrupted detections. However, research on the detection of
anomalous intervals in time-series has been very limited.

In this work, we propose to use the novel Maximally
Divergent Intervals (MDI) algorithm for detection of extreme
events in climate data. This algorithm leverages machine
learning techniques to search for anomalous intervals instead
of isolated points in multivariate time-series data and can work
in a completely unsupervised scenario, i.e., without involving
any domain-specific prior knowledge.

The remainder of this paper is organized as follows: We
briefly review related work on detection of anomalous intervals
in spatio-temporal data in section II and introduce the basics
of the Maximally Divergent Intervals (MDI) algorithm in
section III, along with some adaptations which were necessary
to make it suitable for the task of detecting extreme weather
events. Application examples on several datasets are demon-
strated in section IV. Section V concludes this paper.

II. RELATED WORK

Despite the large amount of work on detection of outliers
and single anomalous points, for which an extensive survey has
been conducted by Chandola et al. [5], the task of collective
anomaly detection, however, has only received marginal at-
tention in literature. This is surprising, since anomalies driven
by a natural process are unlikely to occur at a single isolated
point of time only. Some approaches dealing with climate data
try to mitigate this issue by downsampling the data to a coarse
resolution and/or manually merging nearby detections which
seem to belong to the same event [6]. Clearly, such approaches
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that use point-wise detectors, but are actually interested in
intervals, are very error-prone and unsatisfactory.

Despite the sparsity of suitable approaches, the problem of
detecting anomalous intervals has been known for a couple
of years. Keogh et al. [7] have already tackled this task in
2005 with a method they called “HOT SAX”. They try to
find anomalous sub-sequences (“discords”) of time-series by
representing all possible sub-sequences of length d as a d-
dimensional vector and using the Euclidean distance to the
nearest neighbor in that space as anomaly score. However, this
method is limited to univariate data and a fixed length of the
intervals must be specified in advance, making it a clearly sub-
optimal approach for applications dealing with often multi-
variate climate data and events of varying length.

More similar to our objective, a recent work of Jiang et al.
[8] measures the divergence between probability distributions
to search for anomalous blocks in multi-modal tensors (an
analogy to spatio-temporal data and our method). However,
their approach is designed for discrete data only (e.g., relations
in social networks) and uses a Poisson distribution to model
the data. Since their search strategy for anomalous blocks is
very specific to applications dealing with graph data, it is not
applicable in the general case for multivariate continuous data
dealt with in our work.

With respect to our pursued application, i.e., detecting
extreme events in climate data, Mı́nguez et al. [9], for example,
investigate how regression models can be used to detect
outliers corresponding to hurricanes in hindcast datasets based
on the residuals of the data or the model parameters. However,
such an approach is strictly limited to the detection of single
points.

In contrast, a recent approach of Liu et al. [10] localizes
hurricanes spatially using convolutional neural networks. Be-
ing a supervised approach, this method requires annotated
training data which is often difficult to obtain. This is in
opposition to our approach, which does not need any training
data and is, in consequence, not restricted to certain kinds of
anomalies defined by the annotations. This allows us to also
detect anomalies that have not been expected. Moreover, the
approach of Liu et al. [10] requires the size of the regions to
be fixed in advance and does not consider the temporal extent
of the anomalies at all.

In spatio-temporal data, however, anomalies may also move
over time, which cannot be captured by regular sub-blocks.
Wu et al. [11] follow a sequential approach for detecting such
anomalies in precipitation data first spatially, then temporally
and apply a merge-strategy afterwards. For the detection of
spatial outliers, they scan over all possible regions at each
time-step and search for the top k regions with the highest
value of the Kulldorff Spatial Scan Statistic (KSS Statistic).
They then associate the outliers across contiguous time-steps
using the following algorithm: Expand each anomalous region
at time t by a given amount of cells and search for “children”
at time t + 1 that are completely contained in the expanded
region. This way, an anomaly tree is built, associating each
anomaly with multiple children at the next time. In a final

step they extract each possible sequence of moving anomalous
spatio-temporal regions from that tree.

Two major drawbacks of this approach are, that the com-
plexity of the extraction of all possible sequences of spatial
outliers from the tree is exponential in the time dimension
and that the KSS Statistic is limited to binary-valued data.
Wu et al. [11] use a simple threshold operation to binarize
climate data, which can be seen as a very simple outlier
detection technique itself. In addition, their approach only
finds anomalies that are both spatial and temporal anomalies,
whereas we are more interested in determining the spatial
location of temporal anomalies. Our approach, in contrast, is
able to deal with multivariate real-valued data and does not
search for temporal and spatial anomalies separately, but treats
time and space jointly.

III. THE MAXIMALLY DIVERGENT INTERVALS
ALGORITHM FOR ANOMALY DETECTION

In this section, we briefly revisit the recently proposed
Maximally Divergent Intervals (MDI) algorithm [12] for de-
tection of anomalous intervals in time-series and propose some
crucial adaptations and extensions needed for a successful
application to extreme weather event detection. In particular,
we propose a modification to the divergence measure used by
the algorithm to make it independent of the size of the intervals
being compared. Moreover, we extend the algorithm, which
was initially designed to deal with non-spatial time-series, to
spatio-temporal data and investigate how to deal with missing
values in the data, which is a common problem when dealing
with real data obtained from multiple error-prone sensors.

A. Detecting Intervals of Maximal Divergence

Given a series (xt)
n
t=1, xt ∈ Rd, of n timesteps, the MDI

algorithm searches for intervals I = {t ∈ N | a ≤ t < b} =
[a, b) whose data distribution is most different from the
distribution of the data in the remainder of the time-series
Ω = [1, n] \ I (cf. fig. 1). The Kullback-Leibler (KL) di-
vergence is employed for quantifying the degree of deviation
between the two distributions pI and pΩ:

KL(pI , pΩ) =

∫
pI(xt) · log

(
pI(xt)

pΩ(xt)

)
dxt . (1)

The probability density functions pI = N (µI , SI) and
pΩ = N (µΩ, SΩ) are approximated by fitting a multivariate
normal distribution (a “Gaussian”) to the data in the two
intervals I and Ω, respectively. This model comes along with
the advantage that there is a known closed-form solution for
the KL divergence of two Gaussians [13], allowing for explicit
computation of (1):

KL(pI , pΩ) =
1

2

(
(µΩ − µI)> S−1

Ω (µΩ − µI)

+ trace
(
S−1

Ω SI
)

+ log
|SΩ|
|SI |

− d
)
.

(2)

To mitigate the inadequate assumption of this model that
all points in the time-series are independent from each other,



Fig. 2. Illustration of time-delay embedding with κ = 3, τ = 4. The attribute
vector of each sample is augmented with the attributes of the samples 4 and
8 time steps earlier.

time-delay embedding [14] is applied as a pre-processing step
in order to obtain a modified time-series (x′t)

n
t=1+(κ−1)τ , x

′
t ∈

Rκd, where each sample x′t incorporates attributes from some
previous time-steps as context:

x′t =
(
x>t x>t−τ x>t−2τ · · · x>t−(κ−1)·τ

)>
. (3)

The number of aggregated samples κ is called embedding
dimension and the distance between two consecutive context
samples τ is called the time lag. An illustrative example is
given in fig. 2.

After having computed the KL divergence for every pair of
intervals I,Ω with user-specified constraints on the minimum
and maximum size of I , the algorithm returns a desired num-
ber of top k detections with the highest KL divergence. Non-
maximum suppression is applied to obtain non-overlapping
intervals only.

The MDI algorithm is, in principle, an unsupervised tech-
nique, i.e., it does not require any training data and is, hence, a
very versatile method that can be applied to different data from
various domains. However, some prior knowledge about the
task at hand is at least useful to achieve optimal performance.
In particular, restricting the size of the anomalous intervals
to be searched for to reasonable limits in advance will lead
to a significant reduction of the search space and, thus, faster
detection.

Furthermore, the quality of the resulting detections is often
quite sensitive to the parameters of time-delay embedding: A
larger embedding dimension κ will provide the MDI algo-
rithm with more context information, but also increases the
dimensionality of the data, requiring more data per interval
for a robust estimation of the distribution parameters. The
time-lag τ can be used to take more context into account
without increasing the embedding dimension by skipping some
time-steps between context samples, but a too large time-lag
will hence increase the risk of missing important informa-
tion. Thus, a suitable trade-off has to be found. However,
a satisfactory approach for automatic determination of these
parameters does not yet exist, since their optimal values vary
widely depending on both the data and the application [14].
Therefore, application-specific prior knowledge is beneficial
in this regard as well.

B. Dealing with Spatio-Temporal Data

In order to detect anomalies in climate data, which usually
do not only possess a temporal, but also spatial contextual
attributes, the MDI algorithm needs to be extended to be

Fig. 3. Exemplary illustration of spatial-neighbor embedding with κx =
3, κy = 2, τx = 3, τy = 2. The attribute vector at the location with a
solid fill color is augmented with the attributes of the samples with a striped
pattern.

capable of handling spatio-temporal data. Instead of searching
for anomalous intervals along the time axis only, it has
to search for anomalous blocks in a data tensor with both
temporal and spatial context.

This extension is straight-forward, since the probability den-
sity model employed by the MDI algorithm already assumed
independence of the data across different time-steps and fixed
this assumption by incorporating temporal context into each
sample as a pre-processing step. Analogously, we extend this
independence assumption to the spatial axes and augment each
sample not only with the attributes at previous points of time,
but also with the values at neighboring locations (cf. fig. 3).
This pre-processing step, which we refer to as spatial-neighbor
embedding, is parametrized with 3 parameters κx, κy, κz for
the embedding dimension along each spatial axis and 3 pa-
rameters τx, τy, τz for the lag along each axis.

Note that, in contrast to time-delay embedding, neighbors
from both directions are aggregated, since spatial context is
bilinear. Thus, κx = 3, for example, would mean to consider
4 neighboring coordinates along the x-axis, 2 in each direction.

Spatial-neighbor embedding can either be applied before
or after time-delay embedding. As opposed to many spatio-
temporal anomaly detection approaches that perform temporal
and spatial anomaly detection sequentially (e.g., [11], [15],
[16]), the MDI algorithm in combination with the two embed-
dings allows for a joint optimization. However, it implies a
much more drastic multiplication of the data size.

C. An unbiased KL divergence

During initial experiments with the MDI algorithm on
real data, we discovered that the Kullback-Leibler divergence
proposed by [12] usually leads to detections of the minimum
allowed size, so that larger anomalies are split up across
multiple consecutive detections (see fig. 4a for an example).

This bias towards smaller intervals is due to the different
amount of samples involved in the estimation of the distribu-
tion of the data in the intervals. Under the assumption of data
being sampled from a Gaussian, the KL divergence becomes
a random variable as well, but its mean depends on the length
of the interval I .

To remedy this issue we leverage theory about statistical
tests, since the objective of assessing the “divergence” between



(a) KL(pI , pΩ) (b) U-KL(pI , pΩ)

Fig. 4. Top 10 detections obtained from the KL divergence on a real time-series (left) and top 3 detections obtained from the unbiased KL divergence on
the same time-series (right). This example illustrates the phenomenon of several contiguous minimum-size detections when using the original KL divergence
(note the thin lines between the single detections in the left plot). The MDI algorithm has been applied with a time-delay embedding of κ = 3, τ = 1 and
the size of the intervals to analyze has been limited to be between 25 and 250 time-steps.

the data distribution in an inner interval I and an outer interval
Ω can also be interpreted as a statistical test: Under the
asymptotic assumption of very long time-series, the estimated
distribution pΩ converges towards the true distribution of the
data in Ω, which can, thus, be assumed to be known. The null
hypothesis of the test would be that the data in I has been
sampled from the same distribution. A certain test statistic
may then be used as a measure for how well the data in the
interval I fit the model established based on the data in the
remainder of the time-series [17].

We define an unbiased KL divergence that is equivalent to
this test statistic and corrects the bias of the KL divergence
through a multiplication with the number of samples involved
in estimating pI (i.e., the size of the interval):

U-KL(pI , pΩ) := 2 · |I| · KL(pI , pΩ) . (4)

The mean value of this divergence can be shown to depend on
the number of attributes d only [18] and is independent of the
size of I and Ω. Though that is only true under the asymptotic
assumption of infinitely long time-series, this simple correction
may also be useful for time-series of finite length. An example
of actual detections resulting from the use of the unbiased KL
divergence compared with the original one can be seen in
fig. 4.

D. Missing Values

One restriction of the MDI algorithm is that its embedding
mechanisms assume regular spacing between the values of
the contextual attributes. That means, time-steps have to be
equidistant and spatial locations have to be organized in a
regular grid. However, real datasets often contain “missing
values”, i.e., samples for which a value is not available, e.g.,
due to sensor failures.

Since the probability density models employed by the MDI
algorithm do not take the contextual attributes into account at
all, samples with missing values for some attributes can just
be ignored during probability density estimation under certain
conditions. This procedure of ignoring entire samples with
missing values for parameter estimation is known as listwise
deletion or complete case analysis and is only valid under the
assumption, that the data is missing at random (MAR) [19].

That means, whether a value is missing or not is independent
of the value itself (though it may depend on the values of
other, observed variables). This condition is, for example, not
met if a value is missing from the data because it was out of
the range that can be measured by the sensor. In this case,
parameter estimation ignoring missing values is likely to be
extremely biased and the missing data mechanism has to be
modeled as part of the estimation process [19].

Though listwise deletion is considered to be one of the safest
methods for dealing with missing values in the MAR scenario
[19], it discards a potentially large amount of usable data and,
thus, often leads to a severe loss of statistical power. In case of
the MDI algorithm, this may become particularly problematic
due to the application of time-delay and spatial-neighbor
embedding, so that a single missing value can spread to
multiple samples. Entire samples with missing values in their
context would, therefore, be ignored, though their remaining
attributes may be valid.

However, approaches for parameter estimation exploiting all
available data in spite of missing values often involve iterative
procedures for data imputation [20]. Such methods are too
time-consuming for being used as part of the MDI algorithm.
Therefore, we rely on the simple listwise deletion scheme,
which is not problematic as long as missing values are scarce.

E. Software and Graphical User Interface

Since the detection of anomalies in time-series is an im-
portant task in many fields, the software performing this task
should be employable by non-computer scientists as well. Of
particular importance for a good usability is the availability of
a graphical user interface (GUI) that does not only assist the
user in loading the data and setting the parameters, but also
in the analysis of the results.

In order to make the MDI algorithm available to a larger
audience, we provide an efficient implementation as C++
library that can be accessed via a convenient Python interface.

For non-spatial time-series, a graphical user interface (GUI)
is available, allowing for comfortable experimentation with
custom time-series data and the various parameters of the
MDI algorithm (see fig. 5). After running the algorithm, the
resulting detections are directly visualized in the GUI and their



Fig. 5. Graphical User Interface

confidence is indicated by varying intensities of the fill color.
The user may zoom and pan that interactive graph as well as
traverse through the detections in their respective order using
the corresponding tool buttons. Of course, not only the graph,
but also the detections themselves may be exported for further
analysis with other software.

The software is made available as open source and can be
obtained at https://cvjena.github.io/libmaxdiv/.

IV. DETECTION OF EXTREME WEATHER EVENTS

In this section we explore how the MDI algorithm can be
used for detection of extreme weather events in climate data,
beginning with hurricane detection based on a plain time-series
measured at a single location, continuing with storm detection
in a spatio-temporal dataset covering the southern North Sea,
and finally showing an application to detection of low-pressure
areas in data of a much wider spatial extent.

In all our experiments, we use the unbiased KL divergence
proposed in section III-C.

A. Hurricanes

First, we try to detect extreme events in a purely temporal
time-series without spatial information. We use meteocean
data (significant wave height, Hs, wind speed, W, and sea level
pressure, SLP) measured at a location near the Bahamas in the
Atlantic Sea (23.866° N, 68.481° W). Six months of hourly
data, from June 2012 until November 2012, were extracted
from the National Data Buoy Center from the NOAA1. This
period corresponds to the Atlantic hurricane season, which
was particularly active in that year with 19 tropical cyclones
(winds above 52 km/h), where 10 of them became hurricanes
(winds above 64 km/h).

Since this data is non-spatial, it can be conveniently pro-
cessed with our GUI without having to write a single line of

1http://www.ndbc.noaa.gov/

Fig. 6. Hurricane detections. Colored outlines represent historical hurricanes
and filled red areas are the top 5 intervals detected by the MDI algorithm.
Small red numbers indicate the ranking of the detections.

code. Since the data contains missing values at 6 time-steps,
this experiment also demonstrates that such a scenario can be
handled by the MDI algorithm as well.

We have restricted the size of the intervals to be searched
for to be between 12 and 72 hours and applied time-delay
embedding with parameters κ = 3, τ = 1. All variables in the
time-series have been normalized individually before running
the MDI algorithm by subtracting their mean and dividing by
the maximum value.

Figure 6 shows the top 5 detections returned by the algo-
rithm as filled red areas on top of the time-series. The colored
outlines represent the official duration of the three main events
of that season that passed by near our location, i.e., the
hurricanes Isaac, Rafael, and Sandy. The top 3 detections
returned by the MDI algorithm correspond quite accurately
to those three events. Note that in general the ground-truth
areas may be slightly larger than the detections, because they
span the entire lifetime of the hurricanes and not just their
presence at the Bahamas.

B. North Sea Storms

The time-series used in the previous experiment was rather
short. In the following, we apply the MDI algorithm to a much
longer time-series for detecting storms over the southern North
Sea. For this purpose, the coastDat-1 reanalysis database,
provided by the Helmholtz-Zentrum Geesthacht [21], has been
used. This dataset comprises marine climate parameters at an
hourly resolution over 50 years, from 1958 to 2007 (~450.000
observations). We have selected the area between 53.9° N, 0°
E and 56° N, 7.7° E as a subset for this experiment, since
it is located entirely over sea. Because cyclones and other
storms usually have a large spatial extent and move over the
region covered by the measurements, we reduce the spatio-
temporal data to purely temporal data in this experiment by
averaging over all spatial locations. The variables used for this
experiment are significant wave height, mean wave period and
wind speed.

https://cvjena.github.io/libmaxdiv/
http://www.ndbc.noaa.gov/


Since North Sea storms lasting longer than 3 days are
usually considered two independent storms, the maximum
length of the possible intervals is set to 72 hours, while the
minimum length is set to 12 hours. As before, the parameters
of time-delay embedding are fixed to κ = 3, τ = 1.

We were able to associate 28 out of the top 50 and 7 out of
the top 10 detections returned by the algorithm with known
historic storms. The highest scoring detection is the well-
known “Hamburg-Flut”, which flooded one fifth of Hamburg
in February 1962 and caused 340 deaths. Also among the top
5 is the so-called “North Frisian Flood”, which was a severe
surge in November 1981 and lead to several dike breaches in
Denmark.

Figure 7 shows a heatmap of the three variables under con-
sideration during the middle of the detected timeframes for the
top 7 detections. Animated heat maps for the entire time-frame
covered by the top detections can be found on our web page:
http://www.inf-cv.uni-jena.de/libmaxdiv applications.html.

A visual inspection of the remaining 22 detections that
could not be matched against our database of historic storms
revealed, that almost all of them are North Sea storms as
well. Only 4 of the top 50 detections are not storms, but the
opposite: they span times of extremely calm sea conditions
with nearly no wind and very low waves, which is some
kind of anomaly as well. Two examples of such detections
are shown in fig. 8.

We have also repeated this experiment after applying Z-
Score deseasonalization [22], but found it to be neither needed
nor useful for the detection of North Sea storms in this
scenario. Since such storms are quite common during the
winter, but very uncommon during the summer months, desea-
sonalization would emphasize summer storms. Thus, whether
deseasonalization is useful or not does not only depend on
the presence of seasonal patterns in the data, but also on the
application.

C. Low Pressure Areas

As a genuine spatio-temporal use-case, we have also applied
the MDI algorithm to a time-series with daily sea level
pressure (SLP) measurements over the North Atlantic Sea with
a much wider spatial coverage than in the previous experiment.
For this purpose, we selected a subset of the NCEP/NCAR
reanalysis [23] covering the years from 1957 to 2011. This
results in a comparatively short time-series of about 20,000
days. The spatial resolution of 2.5° degrees is rather coarse
and the locations are organized in a regular grid of size 28×17
covering the area between 25° N, 52.5° W and 65° N, 15° E.

Regarding the time dimension, we apply time-delay embed-
ding as usual with κ = 3, τ = 1 and search for intervals of
size between 3 and 10 days. Concerning space, we do not
apply any contextual embedding for now and set a minimum
size of 7.5° × 7.5°, but no maximum. 7 out of the top 20
detections could be associated with known historic storms.

A visual inspection of the results shows that the MDI
algorithm is not only capable of detecting occurrences of
anomalous low-pressure fields over time, but also their

spatial location. This can be seen in the animations
on our web page: http://www.inf-cv.uni-jena.de/libmaxdiv
applications.html. Some snapshots are shown in fig. 9.

It is not necessary to apply spatial-neighbor embedding in
this scenario, since we are not interested in spatial outliers,
but only in the location of temporal outliers. We have also
experimented with applying spatial-neighbor embedding in
this scenario and it led to the detection of some high-pressure
fields surrounded by low-pressure fields, i.e., spatial outliers,
but not necessarily temporal ones. Since high-pressure fields
are both larger and more common in this time-series, they
are not detected as temporal anomalies. Thus, if one is
only interested in the localization of temporal anomalies, but
not necessarily in the detection of spatial or spatio-temporal
anomalies, spatial-neighbor embedding does not seem to be
necessary.

V. CONCLUSION

We have shown how the Maximally Divergent Intervals
(MDI) algorithm for anomaly detection can be used to find
extreme weather events in climate data in an unsupervised
fashion, i.e., without any need for training data or hand-crafted
rules. To enable this, we extended the algorithm to be capable
of handling spatio-temporal data and proposed an unbiased
Kullback-Leibler divergence for anomaly detection, which is
not biased with respect to the size of the anomalous intervals.

Experiments on climate data demonstrated that this method
can be a useful tool for automatic analysis of environmen-
tal data, including detection of hurricanes, storms and low-
pressure fields.

However, especially the latter experiment on a spatio-
temporal dataset has also exposed some limitations of the
current version of the MDI algorithm. It is not able to track
anomalies that move in space over time, since it considers
rectangular blocks in the data tensor only. For the same
reason, it currently cannot handle data with spatial locations
not organized in a regular grid. Moreover, scalability is an
issue that has to be tackled in future work, since the number
of possible intervals to be analyzed grows very quickly in
spatio-temporal data.
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Fig. 7. Top 7 detected time frames on the coastDat-1 hindcast [21]. Heatmaps show the state of the three variables during the middle of the detected time
frame. The red frame highlights the area whose data have been used for this experiment. Heatmaps are best viewed in color.
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Fig. 8. Exemplary detections of time frames with unusually calm sea conditions on the coastDat-1 hindcast [21]. Only the middle of the time frame is shown.



Start Middle End

19
96

-0
1-

06
–

19
96

-0
1-

15
19

90
-0

1-
28

–
19

90
-0

2-
06

19
89

-1
2-

22
–

19
89

-1
2-

31
20

09
-0

1-
18

–
20

09
-0

1-
27

19
82

-1
2-

14
–

19
82

-1
2-

23

Fig. 9. Heatmaps showing sea level pressure at the beginning, the middle and the end of the top 5 detections on the SLP dataset. The red box marks the
detected area. Heatmaps are best viewed in color.



[5] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[6] M. Das and S. Parthasarathy, “Anomaly detection and spatio-temporal
analysis of global climate system,” in Proceedings of the third inter-
national workshop on knowledge discovery from sensor data. ACM,
2009, pp. 142–150.

[7] E. Keogh, J. Lin, and A. Fu, “Hot sax: Efficiently finding the most
unusual time series subsequence,” in IEEE International Conference on
Data Mining (ICDM). IEEE, 2005, pp. 8–pp.

[8] M. Jiang, A. Beutel, P. Cui, B. Hooi, S. Yang, and C. Faloutsos, “A
general suspiciousness metric for dense blocks in multimodal data,” in
IEEE International Conference on Data Mining (ICDM). IEEE, 2015,
pp. 781–786.

[9] R. Mı́nguez, B. Reguero, A. Luceño, and F. Méndez, “Regression models
for outlier identification (hurricanes and typhoons) in wave hindcast
databases,” Journal of Atmospheric and Oceanic Technology, vol. 29,
no. 2, pp. 267–285, 2012.

[10] Y. Liu, E. Racah, J. Correa, A. Khosrowshahi, D. Lavers, K. Kunkel,
M. Wehner, W. Collins et al., “Application of deep convolutional neural
networks for detecting extreme weather in climate datasets,” arXiv
preprint arXiv:1605.01156, 2016.

[11] E. Wu, W. Liu, and S. Chawla, “Spatio-temporal outlier detection in
precipitation data,” in Knowledge discovery from sensor data. Springer,
2010, pp. 115–133.

[12] E. Rodner, B. Barz, Y. Guanche, M. Flach, M. Mahecha, P. Bodesheim,
M. Reichstein, and J. Denzler, “Maximally divergent intervals for
anomaly detection,” in ICML Workshop on Anomaly Detection (ICML-
WS), 2016.

[13] J. Duchi, “Derivations for linear algebra and optimization,” Berkeley,
California, 2007.

[14] N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, “Geometry
from a time series,” Physical review letters, vol. 45, no. 9, p. 712, 1980.

[15] A. Kut and D. Birant, “Spatio-temporal outlier detection in large
databases,” CIT. Journal of computing and information technology,
vol. 14, no. 4, pp. 291–297, 2006.

[16] T. Cheng and Z. Li, “A multiscale approach for spatio-temporal outlier
detection,” T. GIS, vol. 10, no. 2, pp. 253–263, 2006.

[17] T. Kanungo and R. M. Haralick, “Multivariate hypothesis testing for
gaussian data: Theory and software,” Citeseer, Tech. Rep., 1995.

[18] T. W. Anderson, “An introduction to multivariate statistical analysis,”
Wiley New York, Tech. Rep., 1962.

[19] P. D. Allison, Missing data. Sage publications, 2001.
[20] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood

from incomplete data via the em algorithm,” Journal of the royal
statistical society. Series B (methodological), pp. 1–38, 1977.

[21] Helmholtz-Zentrum Geesthacht, Zentrum für Material- und
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