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Abstract

Uncertainty-based multi camera calibration from
relative poses can basically be applied to multi cam-
era systems in which some camera pairs do not have
a common field of view. However, there are limita-
tions to this method. In practice, the uncertainty
measures are not perfect and sometimes fail to as-
sign a high uncertainty to invalid relative pose esti-
mates. We hence suggest using a specialized mea-
sure to remove camera pairs without a common field
of view before calibrating. Furthermore, in case of
an ad hoc camera network placed in two or more
separate rooms, we first have to separate the cam-
eras before we can calibrate. We use common field
of view detection for this task and show that the
common field of view threshold can be automati-
cally determined if the number of rooms is known.
In quantitative experiments, we show that common
field of view detection improves the multi camera
calibration and that separating cameras into rooms
works well.

1 Introduction

Multi camera systems become increasingly impor-
tant in computer vision and also computer graph-
ics. Applications include 3D reconstruction, image-
based modeling and rendering, multi view object
tracking, and event detection. An important prereq-
uisite for most applications is calibrating the multi
camera system. In this paper, we investigate the
problem of extrinsically calibrating a multi camera
system, in which some or even many camera pairs
do not have a common field of view. This situa-
tion is especially important in case of ad hoc multi
camera systems, which become increasingly popu-
lar. Such systems can be set up very quickly using
e.g. wireless communication between cameras and
computing devices. Ideally, calibrating such a sys-

tem should be as simple as setting it up.
Existing methods can be very roughly classified

into three groups by the type of input or scene
knowledge they require. Pattern based methods use
a classical calibration pattern, which either has to
be visible in all images [1] or the poses of multi-
ple calibration objects have to be known [2]. The
second group uses some easily detectable, moving
single feature, like an LED in a dark room, which is
recorded over time [3, 4]. From a practical point of
view, the most appealing class of methods is self-
calibration. Images are taken from an unknown
scene, typically with some (unknown) 3D structure
and texture [5, 6, 7, 8].

The approach of Bajramovic and Denzler [8]
only needs a single image from each camera and
known intrinsic parameters as input. It neither re-
quires a calibration pattern nor moving cameras or
objects. After extracting SIFT point correspon-
dences [9] and estimating the relative poses of all
camera pairs [10, 11], the multi camera calibration
is composed using a graph-theoretically formulated,
uncertainty-based selection of relative poses. Obvi-
ously, if a pair of cameras does not have a common
field of view, it is impossible to extract valid cor-
respondences and hence to estimate their relative
pose. In the above mentioned approach, however,
such cases are not detected and lead to invalid edges
in the graph.

To a certain extent, the uncertainty-based selec-
tion of relative poses is able to avoid such invalid
edges, as they typically have a high uncertainty
[12]. Nevertheless, if camera pairs without a com-
mon field of view are removed before the calibra-
tion (using e. g. our method [13]), the selection only
has to handle the uncertainty caused by noisy cor-
respondences and outliers. We hence expect an im-
provement of the calibration results.

Furthermore, if an ad hoc multi camera system is
set up in two or more separate rooms without man-
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ually specifying which camera is in which room,
there will be many invalid edges in the graph and
the above mentioned approach [8] will try to jointly
calibrate all cameras, which makes no sense. In this
case, removing invalid edges using common field of
view detection is required to decompose the graph
into subgraphs corresponding to the rooms. We pro-
pose a method to automatically determine the com-
mon field of view threshold in case the number of
rooms is known.

To summarize, we make the following contribu-
tions in this paper: we experimentally analyze the
combination of common field of view detection [13]
and uncertainty-based selection of relative poses for
multi camera calibration [8]. Furthermore, we use
common field of view detection with an automat-
ically determined threshold to separate cameras in
two or three different, visually separated rooms as
a prerequisite for calibration. As a further, mi-
nor contribution, we evaluate the performance of
our best common field of view measure [13] ap-
plied as an uncertainty measure on relative poses
for multi camera calibration—even though it was
not designed for that purpose.

The remainder of the paper is structured as fol-
lows. In section 2 we briefly describe common field
of view detection followed by uncertainty-based
multi camera calibration in section 3. The combi-
nation of these techniques is discussed in section 4.
We present experiments and results in section 5.
Conclusions are given in section 6.

2 Common Field of View Detection

Common field of view detection consists of de-
ciding which image pairs show a common part of
the world. We presented and compared several
approaches to that problem [13]. In this section,
we will briefly describe our probabilistic method,
which gave the best results in our experiments.

The main idea consists of using the normalized
joint entropy of point correspondence probability
distributions as a measure. A low entropy indicates
peaked distributions due to unambiguously match-
able points. High entropy values, however, result
from more or less uniform correspondence distribu-
tions, which indicate unrelated images.

In order to construct the correspondence proba-
bility distributions, the difference of Gaussian de-
tector [9] is used to detect interest points C =

{x1, . . . , xn} and C′ = {x′1, . . . , x
′
n′ } in both images.

For each point xi, the SIFT descriptor des(xi) is
computed [9]. These descriptors are used to con-
struct a conditional correspondence probability dis-
tribution for each xi:

p
(
x′j | xi

)
∝ exp

(
−

di j − dN(xi)
λ dN(xi)

)
, (1)

where λ is the inverse scale parameter of the ex-
ponential distribution, di j = dist(des(xi),des(x′j)) is
the Euclidean distance between the descriptors of
the points xi and x′j, and dN(xi) = min j(di j) denotes
the distance of the nearest neighbor of the point xi.
Each of the resulting conditional probability distri-
butions p(x′j | xi) has to be normalized such that∑n′

j=1 p(x′j | xi) = 1 holds.
The normalized joint entropy is defined as:

H(C,C′) = (2)

−
1
η

n∑
i=1

n′∑
j=1

p(xi)p
(
x′j | xi

)
log

(
p(xi)p

(
x′j | xi

))
,

where η = log(nn′) is the maximum joint entropy
and p(xi) is a uniform distribution if no prior infor-
mation about the interest points is available. The
joint entropy is maximized if all conditional prob-
ability distributions p(x′j | xi) are uniform. It is
minimized if every interest point in the first image
has a unique corresponding point with an identical
descriptor in the second image. Image pairs with
a common field of view can hence be detected by
thresholding H(C,C′).

Since every point in an image can only have a
single corresponding point in the second image,
|C| = |C′| = m is enforced by selecting exactly m
points from each of the two point sets C and C′.
The point pairs are sorted in descending order by
the conditional probability p(x′j | xi). According to
this order, the m best points of each point set are
chosen. After the selection, the conditional prob-
abilities need to be recomputed using the selected
subsets. An obvious upper bound for the value m is
min(|C|, |C′|), but smaller values can be better [13].

3 Multi Camera Calibration

In this section, we briefly describe the multi cam-
era (self-)calibration approach of Bajramovic and
Denzler [8]. As input, we get an image from each
camera as well as its intrinsic parameters. The task



is to estimate the extrinsic parameters of all cameras
up to a common unknown similarity transformation.
The whole process consists of the following steps:
extract point correspondences (using e.g. SIFT [9]),
estimate relative poses and their uncertainties, se-
lect suitable relative poses, and compose them to
the final calibration.

3.1 Uncertainty measures

The relative pose R, t∗ of the cameras i and j is esti-
mated using the five point algorithm [10] embedded
in a robust sampling scheme similar to MLESAC
[14]. As in RANSAC [15], multiple relative pose
hypotheses are generated from minimal samples of
five point correspondences. Instead of counting in-
liers, each hypothesis is assessed using the proba-
bilistic model p(R, t∗ | D) ∝ p(D | R, t∗)p(R, t∗),
where D denotes the set of all point correspon-
dences, R, t∗ is the relative pose (up to scale), the
prior p(R, t∗) is usually assumed to be uniform,
and the likelihood is modelled using the Blake-
Zisserman distribution:

p(D|R, t∗) ∝
∏

d∈D

(
exp

(
−

s(R, t∗, d)
σ2

)
+ ε

)|D|
−φ

, (3)

where σ2 is the variance of the Gaussian compo-
nent, ε defines the relative weight of the uniform
component, φwidens peaks of the distribution with-
out shifting the positions of its maxima (φ = 0.5 is
recommended, φ = 0 assumes independence), and
s(R, t∗, d) denotes the Sampson approximation of
the squared reprojection error [11] of the point cor-
respondence d and the relative pose R, t∗ together
with the known intrinsic pinhole calibration.

In addition to estimating the relative pose, the
sampling algorithm collects information about the
distribution by computing a two-dimensional, dis-
cretely represented approximation ψ to the marginal
distribution p(t∗ | D). Note that t∗ has two degrees
of freedom, as it can only be determined up to scale.
For further details, the reader is referred to [8].

Bajramovic and Denzler define three uncertainty
measures ω for relative pose estimates based on the
discrete distribution ψ. We use the entropy measure,
which showed the best results in their experiments:

ω(R, t∗) = −
∑
a,b

ψ(a, b) logψ(a, b) . (4)

3.2 Selection of relative poses

The set of cameras and known relative poses can be
represented by the camera dependency graph [8]:
each camera is a vertex and each relative pose is an
edge connecting the associated cameras. In order
to calibrate a camera j relative to a reference cam-
era i, a sequence of triangles (called triangle path)
is required. These triangles are needed to compute
consistent scales for the translation vectors t∗ of all
involved relative poses (e.g. by means of triangu-
lation). Finally, the pose of camera j results from
concatenating relative poses starting at i.

It is important to note that – depending on the
density of the graph – there is usually more than
one triangle path from i to j. Hence it is possible to
choose a triangle path P with minimum total uncer-
tainty of the set E(P) of all involved relative poses:

argmin
P

∑
(R,t∗)∈E(P)

ω(R, t∗) . (5)

This leads to the shortest triangle paths problem
with uncertainties used as edge weights, which can
be solved efficiently by constructing an auxiliary
graph and applying a standard shortest paths algo-
rithm [8]. In order to calibrate the whole multi cam-
era system, the procedure is repeated for all cameras
j. The reference camera i (more precisely, the ref-
erence camera pair) is selected using the same min-
imum uncertainty criterion. For further details, the
reader is referred to the literature [8].

4 Using Common Field of View Detec-
tion for Calibration

If we do not know which camera pairs have a com-
mon field of view, it is straightforward to estimate
the relative poses of all camera pairs and build a
complete camera dependency graph. This approach
has been successfully applied to a multi camera sys-
tem in which some camera pairs do not have a com-
mon field of view [12].

There are theoretical and practical limitations to
this approach, however. The main issue is that,
given a complete camera dependency graph, the
uncertainty-based selection of relative poses as-
sumes that all cameras can be calibrated consis-
tently as one multi camera system—even if this is
not possible, e. g. because the cameras are placed
in two separate rooms (example in Fig. 1). In prac-
tice, there is an additional problem caused by the
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Figure 1: An example of a multi camera system
consisting of cameras in two different rooms. Top:
two separate camera dependency graphs. Bottom:
common graph with many invalid edges.

fact that the uncertainty measure (section 3) is not
perfect. Sometimes, even an invalid relative pose
estimate of a camera pair without a common field of
view can have a lower uncertainty than some good
relative pose estimates. Obviously, this can mislead
the uncertainty-based selection of relative poses.

Both issues can be addressed by integrating com-
mon field of view detection into graph based multi
camera calibration. A specialized measure (sec-
tion 2) is used to remove individual edges from the
camera dependency graph before the calibration is
performed. If all invalid relative poses can be re-
moved this way, the graph based approach of sec-
tion 3 only needs to handle the uncertainty caused
by noisy point correspondences and outliers. On
the other hand, however, the common field of view
detection might remove more edges than necessary
(false negatives), thus possibly forcing the selection
to revert to suboptimal triangle paths using the re-
maining edges or making calibration impossible. In
the experiments, we will hence investigate, how var-
ious common field of view detection thresholds in-
fluence the multi camera calibration results.

In case of cameras in two or more separate
rooms, choosing a good threshold for common field
of view detection is crucial. If the number of rooms
is known, however, a suitable threshold can be cho-
sen automatically such that the camera dependency
graph can be separated into the appropriate num-
ber of subgraphs. In our experiments, we compare
two methods of separating the graph. Both of them

iteratively remove edges according to a decreasing
common field of view threshold. The first method
marks the graph as separated if the number of con-
nected components in the graph equals the number
of rooms. The second one uses the number of tri-
angle connected components instead. In a correctly
separated graph, each component can be calibrated
individually. This includes the common field of
view threshold used for calibration, which may be
chosen independently for each component and may
differ from the separation step. Hence, assuming
correct separation of rooms, the calibration results
are not influenced by the separation step and the ex-
perimental results of the individual rooms apply.

5 Experiments

In the first part of our experiments, we investigate
how common field of view detection affects the ac-
curacy of the multi camera calibration. The second
part analyzes whether the common field of view de-
tection is able to correctly assign the cameras to a
given number of rooms. Both of these experiments
use a threshold on the common field of view mea-
sure (section 2), which is automatically determined
for the room separation task. Note that the lower
the threshold is, the more edges are removed from
the complete camera dependency graph. The max-
imum threshold hence corresponds to the complete
camera dependency graph.

We use a Sony DFW-VL500 camera with a res-
olution of 640 × 480 pixel mounted onto a Stäubli
RX90 robot arm. We estimate the intrinsic cam-
era parameters using Zhang’s [1] calibration pattern
based method. Ground truth camera poses are ob-
tained from the robot arm. We present results for
five different setups: S1–S5 consisting respectively
of 15, 10, 10, 12, and 14 images (examples in Fig-
ure 2). Each image is taken from a different pose
and is treated as an individual camera. The setups
differ in the observed scenes and the positions of the
cameras. Note that S1 is the only setup in which all
camera pairs share a common field of view. For the
second part of our experiments, we use pairs and
triples of these setups to verify whether the com-
mon field of view detection is able to separate the
graph into two or three subgraphs, respectively.

For the common field of view computation, we
set λ = 0.5 and m = 71 as proposed in [13]. For
relative pose and uncertainty estimation, we use the
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Figure 2: Example images of each setup. Only in setup S1 all camera pairs share a common field of view.

parameters σ = 0.25, ε = 0.002 and φ = 0.5, per-
form 10000 sampling iterations, and use a resolu-
tion of 100 × 100 for ψ as proposed in [12]. Each
calibration is repeated 20 times.

5.1 Multi Camera Calibration

As the multi camera system can only be calibrated
up to a 3D similarity transformation, we have to
register the estimate with the ground truth before
we can compare them. For this purpose, we use
Horn’s method [17] followed by a nonlinear op-
timization. As an error measure for the calibra-
tion of a multi camera system in comparison to
the ground truth, we use the mean position error
e = 1

n

∑
i ‖RT

i ti − RT
G,i tG,i‖2 in millimeters, where

the subscript G indicates ground truth.
We use three alternative edge weights for the

uncertainty-based selection of relative poses: the
geometry based measure of eq. (4), the image
based measure of eq. (2), and random values. Using
random values amounts to randomly selecting rel-
ative poses while satisfying structural constraints.
We calibrate each setup using the camera depen-
dency graphs resulting from common field of view
detection with every possible threshold—provided
that the graph is triangle connected. The results are
presented in Figure 3.

For the image and random edge weights, a prior
common field of view detection is able to improve

the results for each setup. In the case of geometry
edge weights, an improvement is only visible in
the setups S2, S4 and S5. However, it is not easy
to predict how many edges need to be removed –
or which threshold needs to be chosen – in order
to reach a refinement of the results. In case of
random edge weights, the improvements are very
pronounced. This is not surprising, as more and
more invalid edges are removed, which can other-
wise only be avoided by chance. However, as far
as the absolute results using the best threshold are
concerned, the geometry edge weights and – most
of the time – also the image edge weights are much
better than random edge weights. This shows that
common field of view detection alone is not enough
and should be combined with uncertainty-based se-
lection of relative poses. If all camera pairs of a
setup share a common field of view, removing edges
from the graph only has a minor impact on the re-
sults, as can be seen in Figure 3, setup S1.

To summarize the results: common field of view
detection improves uncertainty-based multi camera
calibration. However, it is not trivial to choose the
best common field of view threshold. The impact
of common field of view detection depends on the
uncertainty measure and, as expected, is most pro-
nounced in case of using random values. The best
overall results are obtained by combining common
field of view detection with uncertainty-based rela-
tive pose selection using the geometry measure.
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Figure 3: Results for the setups S1, S2, S3, S4 and S5 (from top to bottom). For each of the three edge
weights geometry (left), image (middle), and random (right), the mean position errors (in millimeters) are
presented using boxplots [16] depending on different field of view thresholds. Note that smaller thresholds
lead to fewer remaining edges in the camera dependency graph. A boxplot contains a thick bar depicting
the 0.25 and 0.75 quantiles. The circled dot inside the thick bar is the median. The thin bars indicate the
remaining spread. Circles are outliers. For the sake of legibility, only 15 thresholds are shown.



5.2 Separating Cameras into Rooms

As explained in section 4, a correct separation of
the camera dependency graph into subgraphs is re-
quired if the cameras are positioned in different
rooms without specifying which camera is in which
room. We simulate such a situation by combining
the images of two or three setups. Note that the se-
tups S1, S2 and S3 contain identical objects, which
poses a serious problem. We nevertheless include
these combinations in the experiments to demon-
strate the limitations of our method.

For each pair and triple of setups, Figure 4 shows
the resulting ranges of suitable thresholds of the
connected components method (components) and
the triangle connected components method (trian-
gle). All pairs and triples of setups, which do not
contain identical objects, are correctly separated.
As argued in section 4, the threshold can be auto-
matically chosen if the number of rooms is known.
The fact that there is a certain range of suitable
thresholds indicates that the separation is quite ro-
bust, as removing a few more edges than neces-
sary still produces the same separation. Also note
that the threshold range of the correctly separated
triples is the intersection of the threshold ranges of
the three pairs consisting of these setups.

If at least two out of the three setups S1, S2
and S3, which contain identical objects, are com-
bined, the separation does not work correctly in
most cases. Somewhat surprisingly, the pair S1–S3
is nevertheless separated correctly.

The triangle connected components criterion ap-
pears to be inferior to the connected components
criterion. The latter separates the graph as soon
as it decomposes into two connected components
and hence always produces a result for at least one
threshold. The former method, however, requires
the graph to decompose into two triangle connected
components, which consist of at least three cameras
each. Hence, it is possible that this criterion does
not produce any separation.

As explained in section 4, the common field of
view detection threshold used for the separation has
no influence on the subsequent calibration as long
as the separation is correct. As each subgraph is cal-
ibrated on its own, the common field of view thresh-
old used for calibration can be chosen indepen-
dently for each subgraph. The according calibration
results have been presented in subsection 5.1.

6 Conclusions

We showed that common field of view detection is
able to improve uncertainty-based multi camera cal-
ibration. The best results were achieved by com-
bining the common field of view detection with the
geometric uncertainty edge weights. However, in
most of our experiments, we observed that remov-
ing too many edges leads to worse calibration re-
sults. Hence, further research is required on auto-
matically determining a good value for the thresh-
old on the edge weights. We plan to evaluate the
reprojection error for this task.

We also showed that, in case of cameras in two
or three rooms, common field of view detection can
be used to separate the camera dependency graph
into two or three suitable subgraphs, respectively.
We showed that the common field of view thresh-
old can be determined automatically if the number
of rooms is known. In the experiments, the sepa-
ration was correct if the rooms did not contain any
identical objects. In order to improve the results in
case of identical objects in separate rooms, adding
a geometric consistency measure on triangles might
help. We plan to investigate, how the triangle test
described in [5] can be integrated into our approach.
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