
A Comparison of Nearest Neighbor Search Algorithms
for Generic Object Recognition

Ferid Bajramovic1, Frank Mattern?1, Nicholas Butko2, Joachim Denzler1

1 Chair for Computer Vision, Friedrich-Schiller-University Jena,
{bajramov,mattern,denzler}@informatik.uni-jena.de,

http://www4.informatik.uni-jena.de

2 Department of Cognitive Science, University of California at San Diego,
nbutko@cogsci.ucsd.edu,
http://mplab.ucsd.edu

Abstract The nearest neighbor (NN) classifier is well suited for generic object
recognition. However, it requires storing the complete training data, and classifi-
cation time is linear in the amount of data. There are several approaches to im-
prove runtime and/or memory requirements of nearest neighbor methods: Thin-
ning methods select and store only part of the training data for the classifier.
Efficient query structures reduce query times. In this paper, we present an exper-
imental comparison and analysis of such methods using the ETH-80 database.
We evaluate the following algorithms. Thinning: condensed nearest neighbor, re-
duced nearest neighbor, Baram’s algorithm, the Baram-RNN hybrid algorithm,
Gabriel and GSASH thinning. Query structures: kd-tree and approximate near-
est neighbor. For the first four thinning algorithms, we also present an extension
to k-NN which allows tuning the trade-off between data reduction and classi-
fier degradation. The experiments show that most of the above methods are well
suited for generic object recognition.

1 Introduction

As shown in [1], the nearest neighbor classifier works well for generic object recogni-
tion. However, a naive implementation requires storing the complete training set, and
classification takes time proportional to the size of the training data times the dimension
of the feature vectors. Both aspects can be improved: efficient query structures greatly
reduce classification time and thinning methods reduce the amount of data which has
to be stored for the classifier. In this paper, we evaluate the performance of several such
methods: for classification, we use kd-trees and approximate nearest neighbor (ANN),
and for thinning, condensed nearest neighbor (CNN), reduced nearest neighbor (RNN),
Baram’s algorithm, Baram-RNN hybrid algorithm, Gabriel and GSASH thinning. For
CNN, RNN, Baram and Baram-RNN, we propose and evaluate an extension to k near-
est neighbors, which allows tuning the extent of thinning and thus the trade-off between
data reduction and degradation of classification rates.
? This work was financially supported by the German Science Foundation (DFG), grant no. DE

732/2-1

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 1186–1197, 2006.
©Springer-Verlag Berlin Heidelberg 2006

The remainder of the paper is organized as follows: In section 2 we give a short
repetition of the k nearest neighbor classifier. Sections 3 and 4 describe the efficient
query structures and the thinning algorithms respectively. In section 5 we present our
experimental results. Section 6 gives final conclusions.

2 Nearest Neighbor Classifier

The k nearest neighbors (k-NN) classifier requires a labeled training data set {X ,Y} =
{(x1, y1), . . . , (xn, yn)} consisting of d dimensional feature vectors xi and their class
labels yi. For k = 1, in order to classify a new feature vector x, find the closest element
xi in X and assign the label yi to x. The misclassification error of the 1-NN classifier
converges (for n →∞) to at most twice the Bayes-optimal error [2].

For k > 1, find the k nearest neighbors (xi1 , . . . ,xik
) of x in X . Then perform a

voting amongst the class labels (yi1 , . . . , yik
) of these neighbors. The classic rule is to

choose the class with the most votes within the set of neighbors, breaking ties arbitrarily.
For k > 1, the asymptotic (n →∞) misclassification error of the k-NN classifier is as
low as the Bayes-optimal error [2]. The voting can be modified to include a rejection
rule. There are several possibilities: reject ties, reject if majority is too small, reject if
not all neighbors are in the same class (unanimous voting). In general, the stricter the
voting rule is, the more rejections there will be, but also the lower the misclassification
rate will be.

3 Efficient Query Structures

There are several approaches to improve the running time of brute force nearest neigh-
bor search [3–5]. In higher dimensions, however, these algorithms have an exponen-
tially growing space requirement. Besides the small asymptotic improvement in time
which was achieved by Yao and Yao [6] there exists no exact algorithm which can
improve both time and space requirements in the worst case.

3.1 kd-Tree

The practically most relevant approach known for higher dimensions is the kd-tree in-
troduced by Friedman, Bentley and Finkel [7]. The idea of the kd-tree is to partition
the space using hyperplanes orthogonal to the coordinate axes. Each leaf node contains
a bucket with a number of vectors, the other nodes in the binary kd-tree consist of a
splitting dimension d and a splitting value v.

A query only has to look at one dimension of the query point at each node to decide
into which subtree to descend. After the closest vector ~x in the bucket is found, one also
has to search all buckets which are closer to the query vector than ~x. In order to keep
the tree small and to avoid searching in many buckets, one can stop splitting the tree if
the bucket has a reasonably small size and search in the bucket linearly. It is shown in
section 5 that this can reduce query times.

If the data is organized in a balanced binary tree, running time in the expected case is
logarithmic. Unfortunately, the running time depends on the distribution of the training

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 1186–1197, 2006.
©Springer-Verlag Berlin Heidelberg 2006

data. In the worst case, the running time is linear. To improve the running time, several
splitting rules where defined by [8].

The standard kd-tree splitting rule chooses the dimension as splitting dimension in
which the data X have maximum spread. The splitting threshold is the median of the
coordinates of X along this dimension. The depths of the tree is ensured to be dlog2ne.
But theoretically, the bucket cells can have arbitrarily high aspect ratio.

The midpoint splitting rule guarantees cells with bounded aspect ratio. It cuts the
cells through the mean of its longest side breaking ties by choosing the dimension with
maximum spread. Trivial splits, where all vectors of X lie on one side of the splitting
plane, can occur and possibly cause the tree to have a larger depth than n.

The sliding-midpoint splitting rule is defined as the midpoint splitting rule, but omits
trivial splits by replacing such a split with a split which contains at least one vector on
each side. This is achieved by moving the splitting plane from the actual position up to
the first vector of the dataset. This ensures that the maximum possible tree depth is n.

The fair-split rule is a compromise between the standard and midpoint splitting
rules. The splitting plane is chosen from the possible coordinates in which a midpoint
split can be done that does not exceed a certain aspect ratio of longest to shortest side.
Among these, the coordinate with the maximum spread is chosen. The two extreme
splitting planes which fullfill the aspect ratio will be compared with the median of the
coordinates. If the median is on the smaller side, the cut will be done. Otherwise, a cut
will be done at the median. Again, trivial splits can cause the tree depth to exceed n.

The sliding fair-split rule works as the fair-split rule but omits empty buckets by
considering the extreme cut which just does not exceed a certain aspect ratio and which
is closer to the median if the median does not fulfill the aspect ratio criterion. If this
extreme cut is a trivial one, it is moved up to the position such that one vector lies on
the other side. Again, this ensures that the maximum depth of the tree is n.

3.2 kd-Tree for Approximate Nearest Neighbor

Applying NN classification to generic object recognition, it is not important to really
find the nearest neighbor. The classification is correct if a datapoint of the same class
is found. So we consider doing generic object recognition with an approximate nearest
neighbor approach developed by Arya and Mount [9]. A (1 + ε) approximate nearest
neighbor is defined as follows:

Definition 1 A vector q is called (1 + ε) approximate nearest neighbor of x ∈ X if for
all y ∈ X : d(x, q) ≤ (1 + ε)d(y, q).

The value ε is also called the error bound. If ε = 0, the query is equivalent to the exact
nearest neighbor classification. Otherwise, the minimum distance to the real nearest
neighbor is at least 1/(1 + ε) of the found distance.

To find a given query vector q, the leaf cell in the tree is found by descending
the tree. Only those neighboring cells which are in the range of d(x, q)/(1 + ε) are
searched for a closer training vector. Arya [9, 10] has shown that the algorithm has
polylogarithmic query time and needs nearly linear space which can be made quite
independent of the vector distribution.

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 1186–1197, 2006.
©Springer-Verlag Berlin Heidelberg 2006

Figure 1. Both images show the train-
ing data of two class problems. In the
left image, the subset indicated by the
boxes is a 2-consistent subset. The set in
the right image is 2-consistent, but not 3-
consistent, because the vectors indicated
by the circles are 3-inconsistent.

x xxxxx
f

i

e
gd h

b

a

c

Figure 2. The image shows a 3-consistent two class
training set, which can be thinned by a 3-NN con-
densed nearest neighbor thinning to a 3-inconsistent
set. The example uses the manhatten distance. If the
vectors are visited in the order a, b, c, d, e, f, g, h, i,
all vectors except for i will be added to the thinned
set. In this set, h is 3-inconsistent.

4 Thinning

Thinning means reducing the training data set {X ,Y} to a smaller subset {X ′,Y ′}.
The classifier then only uses {X ′,Y ′}. This results in reduced memory requirements
and query times. There is an important property of thinned data sets {X ′,Y ′} [2]:

Definition 2 A set {X ′,Y ′} ⊆ {X ,Y} is called consistent subset of {X ,Y} if the
1-NN classifier for {X ′,Y ′} correctly classifies all members of the original set {X ,Y}.

This property is very desireable, as it guarantees perfect recognition of the 1-NN clas-
sifier for {X ′,Y ′} applied to the whole training set {X ,Y}. We extend the definition
with respect to the k-NN classifier:

Definition 3 A vector x ∈ X is called k-consistent with respect to {X ,Y} if the
unanimous k-NN classifier for {X ,Y} classifies it correctly. Otherwise it is called k-
inconsistent with respect to {X ,Y}. A set {X ,Y} is called k-consistent set if it has no
elements which are k-inconsistent with respect to {X ,Y}. A subset {X ′,Y ′} ⊆ {X ,Y}
is called k-consistent subset of {X ,Y} if all members of {X ,Y} are k-consistent with
respect to {X ′,Y ′}.

Clearly, the terms consistent subset and 1-consistent subset are equivalent. As for
the 1-NN case, the property k-consistent subset guarantees perfect recognition of the k-
NN classifier for {X ′,Y ′} applied to the whole training set {X ,Y}. Figure 1 shows an
example of a 2-consistent subset for a given training set. Next, we proof three theorems:

Theorem 1 A vector which is k-consistent with respect to a set is also k′-consistent
with respect to the same set, for all k′ ≤ k.

Proof: The k nearest neighbors of a labeled vector (x, c), which is k-consistent with
respect to {X ,Y}, are all in class c. Thus, also its k′ nearest neighbors are in class c.
Thus, (x, c) is k′-consistent with respect to {X ,Y}. �

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 1186–1197, 2006.
©Springer-Verlag Berlin Heidelberg 2006

Input: {X ,Y}
Initialize R with one random element of {X ,Y}

FOR EACH (x, c) ∈ {X ,Y} \R

IF x is k′-inconsistent with respect to R

THEN Set R = R ∪ (x, c)

UNTIL R has not changed during the previous FOR EACH loop
Result: {X ′,Y ′} = R

Figure 3. Hart’s thinning algorithm: condensed nearest neighbor

Theorem 2 A k-consistent subset of a set is a k-consistent set.

Proof: Given a k-consistent subset {X ′,Y ′} of {X ,Y}, all elements of {X ,Y} are k-
consistent with respect to {X ′,Y ′}. As {X ′,Y ′} ⊆ {X ,Y}, all elements of {X ′,Y ′}
are k-consistent with respect to {X ′,Y ′}. Thus, {X ′,Y ′} is a k-consistent set. �

Theorem 3 A k-consistent subset of a set is a k′-consistent subset of the same set, for
all k′ ≤ k.

Proof: Let {X ′,Y ′} be a k-consistent subset of {X ,Y}. All labeled vectors in {X ,Y}
are by definition k-consistent with respect to {X ′,Y ′} and thus k′-consistent with re-
spect to {X ′,Y ′} (theorem 1). Thus, {X ′,Y ′} is a k′-consistent subset of {X ,Y}. �

4.1 Condensed Nearest Neighbor

Hart [2, 11] proposed a thinning algorithm called condensed nearest neighbor (CNN).
First, one element of the training set is chosen arbitrarily. Then, a scan over all remain-
ing elements is performed. During the scan, all elements which are 1-inconsistent with
respect to the new growing set are added to the new set. Additional scans are performed
until the new set does not change during a complete scan. The thinned subset is guar-
anteed to be a 1-consistent subset of the training set [2].

While Hart’s algorithm reduces the size of the data and thus improves memory
requirements and query times, it typically also reduces the recognition rate [2]. De-
pending on the structure of the training data and the application, the degradation of the
classifier may be unacceptable. Hence, we propose an extension to the algorithm. The
only change is that we require vectors to be k′-consistent instead of only 1-consistent.
The complete algorithm is given in Figure 3. The runtime of a naive implementation is
O((d + k′)n3) in the worst case.

While the thinned set is not guaranteed to be a k′-consistent set, as can be seen from
the counter example in Figure 2, it is obviously guaranteed to be a 1-consistent subset
of the training set. It is quite obvious from theorem 3 in combination with the growing
nature of the algorithm that in general, a greater value of parameter k′ will result in a
greater thinned set. The second part of our proposal is to choose k′ ≥ k. This means
that we use a greater (or equal) parameter k′ for thinning than for the application of the
k-NN classifier. On the one hand, this makes sense, because even for a k′-consistent
training set, the thinned subset is not guaranteed to be k′-consistent, but with increasing

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 1186–1197, 2006.
©Springer-Verlag Berlin Heidelberg 2006

Input: training data {X ,Y} and thinned data {X ′,Y ′}
Set R = {X ′,Y ′}
FOR EACH (x, c) ∈ R

IF All (x′, c′) ∈ {X ,Y} are k′-consistent with respect to R \ {(x, c)}
THEN Set R = R \ {(x, c)}

Result: {X ′′,Y ′′} = R

Figure 4. Postprocessing algorithm for reduced nearest neighbor

k′, the chances of the thinned subset being at least k-consistent increase. On the other
hand, while it is desireable to have a k-consistent set (or even better, a k-consistent
subset of the training set), what is more important is the classification rate of the k-NN
classifier for the thinned set on a separate test set. Thus, it makes perfect sense to choose
k′ > 1 for a 1-NN classifier, even though the thinned set is already guaranteed to be a
1-consistent subset of the training set for k′ = 1. To summarize, the parameter k′ can
be used to tune the trade-off between data reduction and classifier degradation.

4.2 Reduced Nearest Neighbor

Gates [2, 12] proposed a postprocessing step for the CNN thinning algorithm. As the
initial members of the thinned set are chosen arbitrarily and as additional members are
added, it may be possible to remove some vectors and still retain a 1-NN consistent sub-
set of the training set. The postprocessing algorithm simply checks for each vector of the
thinned set if the thinned set without that vector is still a 1-NN consistent subset of the
training set. If it is, the vector is removed. Of course this algorithm can also be extended
to a k′-NN version as described in the previous subsection. The postprocessing algo-
rithm is given in Figure 4. The runtime of a naive implementation is O((d + k′)n3) in
the worst case. The complete reduced nearest neighbor (RNN) thinning algorithm per-
forms CNN thinning followed by the postprocessing algorithm. As the CNN part may
produce a k′-inconsistent set and the postprocessing will not remove any k′-inconsistent
vectors, the RNN thinning algorithm can also produce a k′-inconsistent set.

4.3 Baram’s Method

Baram [2, 13] proposed a thinning algorithm that thins each class individually. For each
class, a new set for the thinned class is initialized with an arbitrary member of that
class. Then, each vector of that class, which is 1-inconsistent with respect to a modified
training set in which the current class is replaced by the growing thinned version of
that class, is added. Naturally, also this algorithm can be extended to a k′-NN version.
Figure 5 shows the complete algorithm. The k′-NN version of Baram’s algorithm can
also produce a k′-inconsistent set, as the same counter example as for CNN applies
(Figure 2). The runtime of a naive implementation is O((d + k′)n2) in the worst case.
In an unpublished paper, Olorunleke [14] proposed combining Baram’s algorithms with
the postprocessing step of RNN and calls it Baram-RNN hybrid algorithm.

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 1186–1197, 2006.
©Springer-Verlag Berlin Heidelberg 2006

Input: {X ,Y}
FOR EACH class c ∈ Y

Remove class c: {X ∗,Y∗} = {X ,Y} \ {Xc,Yc}
Set Rc = ∅
FOR EACH vector x ∈ Xc

IF (x, c) is k′-inconsistent with respect to {X ∗,Y∗} ∪Rc

THEN Set Rc = Rc ∪ (x, c)

Result: {X ′,Y ′} =
S

c∈Y Rc

Figure 5. Baram’s thinning algorithm ({Xc,Yc} ⊆ {X ,Y} contains the members of class c)

4.4 Proximity Graph based Thinning

The thinning algorithms in the previous sections all exhibit the property that different
thinned-sets will result from considering the datapoints in a different order. As this is
undesirable, we also consider order-independent, graph-based thinning algorithms.

The starting place for these order-independent algorithms is the Delaunay graph
[15], which is constructed by connecting nodes in adjacent Voronoi cells. A Voronoi
cell is the region of space around a point that is closer to that point than to any other
point. If we remove a point from our set, all points falling in its Voronoi cell will now
fall in a cell belonging to one of its neighbors in the Delauny graph. This suggests a
thinning algorithm: by removing all points that are surrounded by Delauny neighbors
of the same class, we are left with a thinned set that has exactly the same classification
properties as the original set in a 1-NN classification scheme.

Despite its desirable properties, Delaunay Graph thinning has two critical draw-
backs: the algorithm is exponential in the dimensionality of the data, and empirically
removes very few points for real datasets [15]. It seems that tolerating some shift in the
decision boundary can (greatly) increase the number of points removed in thinning.

Two points x1,x2 ∈ X are Gabriel neighbors if there is no third point x3 ∈ X in-
side the hypersphere centered on the midpoint of x1 and x2, and with diameter equal to
the distance between them. Mathematically, we say that x1 and x2 are Gabriel neigh-
bors iff ∀x3 ∈ X , d(x1,x2)2 ≤ d(x1,x3)2 + d(x2,x3)2. A Gabriel graph is an
undirected graph built by connecting each node to all of its Gabriel neighbors. As with
Delaunay graphs, we will consider a thinning algorithm in which all points that are
only neighbors with points of the same class are removed from the dataset. Since the
Gabriel graph is a subset of the Delaunay graph, Gabriel thinning will remove all of
the points that Delaunay thinning removes, and possibly more. This may change the
decision boundary (and possibly even leads to a 1-inconsistent thinned subset), but in
practice, Sánchez et al. found that Gabriel thinning leads to better classification (at the
cost of keeping more points) than traditional CNN methods [16].

There is a quadratic cost to finding a given point’s Gabriel neighbors. To build an
entire graph so that we can do filtering, we incur this cost for every point in the data set.
This means that building an exact Gabriel graph is cubic in the number of data points,
and so is very costly. Using Mukherjee’s GSASH data structure [17], the cost becomes
O(n log2 n), though with potentially large constants.

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 1186–1197, 2006.
©Springer-Verlag Berlin Heidelberg 2006

Figure 6. Sample images of the objects of the ETH-80 database [18]

5 Results

5.1 Dataset

To evaluate the nearest neighbor classification for generic objects, we use the ETH-
80 database [18], which contains 80 objects from 8 categories: apple, car, cow,
cup, dog, horse, pear and tomato (see Figure 6). Each object is represented by
41 images of views from the upper hemisphere. The experiments are performed using
128×128 pixel images, with each image cropped close to the object boundaries. The
grayvalues of the image will be transformed to a feature vector by a PCA transforma-
tion with the eigenvectors of the 100 largest eigenvalues. The 100 dimensional feature
vectors will be used for classification. The test is performed by cross-validation with a
leave-one-object-out strategy. One of the 80 objects is used for testing and the 79 other
objects are used to learn the PCA transformation and build the k-NN query structure.
This “unknown” object must accordingly be classified into the correct object category.

5.2 Experiments

We examined the presented methods with respect to query time, error / rejection / recog-
nition rate and used data size. In many applications, NN is not applied because it is too
slow. This can be improved with the kd-tree. Arya [10] has shown the dependency on
the splitting rule.

One other important parameter of the kd-tree is the bucket size. If it is too small,
the tree becomes very large and the search for the bucket which has to be taken into
consideration takes long. If the bucket size is too large, it takes too much time to search
the bucket linearly. To get a fast kd-tree query, the optimal bucket size for the generic
ETH-80 dataset should be medium size. In our example, bucket size 32 with the stan-
dard kd-tree splitting rule is the best choice. The splitting rule is not very important
if the bucket size is chosen well. For this bucket size, query times vary by about 8%
from 88.9µs with the standard splitting rule to 96.1µs with the midpoint splitting rule,

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 1186–1197, 2006.
©Springer-Verlag Berlin Heidelberg 2006

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 1 10 100 1000 10000

qu
er

y
tim

e
in

 m
s

bucket size

midpoint
sliding-midpoint

fair
sliding-fair

standard

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 10 100 1000 10000

qu
er

y
tim

e
in

 m
s

bucket size

k=29
k=25
k=21
k=19
k=15
k=11

k=9
k=7
k=5
k=3
k=1

Figure 7. Dependency of query time on a Intel Pentium 4 with 3.4GHz on a kd-tree with different
bucket sizes using the generic ETH-80 dataset. Different splitting rules for k = 1 (left) and
different parameters k for the k-NN classifier with standard splitting rule (right) are examined.
Best query times are achieved with bucket size between 20 and 32.

whereas with bucket size one, query times vary by a factor of about two. Using a larger
parameter k for the k-NN classification, the query time increases, but the best query
time is still attained at the same bucket sizes. So this is independent of k (see Figure 7).

The query time can further be decreased by using approximate nearest neighbor
classification. In general, the query time decreases with larger error bounds and also
with lower bucket sizes if the error bound is large enough. In our experiments, the best
query time (5µs) is obtained using ε = 100 and bucket size one, but at the cost of a
strong rise of the error rate to 32.7%. Useful values of ε are about 1–3 (see Figure 8).
Using an error bound ε = 2, the query time can be improved by the factor of 3 to 29.0µs
without losing any recognition rate in our 80 test sets and with ε = 3 to 20.5µs with an
increased error rate of 0.46 percentage points, which is quite acceptable.

Gabriel thinning reduces the data set only to 96.8%. The fastest and least precise
GSASH approximation with one parent and one child reduces the data set to 93.8% and
with 6 children and 6 parents to 94.6%. So the results are similar to those using the
original data set, but can also improve the query time to error rate ratio (see Figure 12).
A major disadvantage of the approach is the time requirement for thinning. Gabriel
thinning needs about 27 minutes for 3239 vectors and the fastest approximation about
11 minutes, whereas e.g. Baram or CNN need only about 2.5 seconds. The reason for the
small reduction is an indication of the bad distribution of the data in the 100 dimensional
space. A reduction of the dataset can still be done with CNN or Baram but at the cost of
recognition rate. Our extension of the NN thinning algorithms can adjust the reduction
of the dataset. This effect can be observed in Figure 9 (left).

As expected, the greater the value of k′ is, the more data is retained after thinning.
Accordingly, as can be seen in Figure 9 (right), the error rate decreases with increas-
ing k′. Furthermore, Figure 10 shows the influence of k′ on the recognition and rejec-
tion rates for Baram and several values of k (unanimous voting). Independent of k and
in accordance with Figure 9, the recognition properties of the classifier improve with
growing k′. This shows that the trade-off between data size and error rate can be tuned.

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 1186–1197, 2006.
©Springer-Verlag Berlin Heidelberg 2006

0.16
0.18
0.2

0.22
0.24
0.26
0.28
0.3

0.32
0.34

1 10 100 1000

er
ro

rr
at

e

bucket size

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

1 10 100 1000

qu
er

y
tim

e
in

m
s

bucket size

ε=0
ε=1
ε=2
ε=3
ε=5

ε=10
ε=20

ε=100

Figure 8. Performance on different approximation error bounds ε. The left image shows that the
error rate on smaller bucket sizes increases, but as the right image shows the query time can
become amazingly fast. For ε = 100 the query time is 5µs but causing an error rate of 32.7%
with a 1-NN classifier on the generic ETH-80 dataset.

 10

 20

 30

 40

 50

 60

 70

 80

 5 10 15 20

%
 o

f d
at

a

thinning k’

CNN
Baram

Baram-RNN
RNN

 0.16

 0.165

 0.17

 0.175

 0.18

 0.185

 0.19

 0.195

 0.2

 0.205

 5 10 15 20

er
ro

r r
at

e

thinning k’

CNN
Baram

Baram-RNN
RNN

Figure 9. In the images, the dependency of different thinning algorithms on the parameter k′ is
presented. The left image shows the proportion of the full dataset which remains after thinning.
In the right image, the error rate using 1-NN on the reduced dataset is shown.

Considering Figure 9 again, a comparison between the four thinning algorithms
shows that for k′ > 1, a) there is no difference between CNN and RNN as well as
between Baram and Baram-RNN and b) Baram keeps a bit more data than CNN. While
it is not suprising that hence the error rate of Baram is lower, it is actually lower than
the sheer amount of data would suggest: Baram with k′ = 6 keeps 58.5% of the data
while CNN with k′ = 9 retains 64.6%. The error rate is 16.2% in both cases. On this
data set, for 1 < k′ < 9, Baram clearly outperforms CNN.

Varying parameter k for k-NN classification with unanimous voting lets us choose
a specific error rate versus rejection rate ratio (see Figure 11). If k becomes larger, the
error rate decrease, but the rejection rate increase. Thinning with k′ < k does not make
sense, because the k-NN rejection rate strongly increases, as Figure 10 shows. Thinning
with k′ = 1 is, with respect to recognition rate, bad in general. The error rate versus
rejection rate ratio is vitally better for k-NN trained with the full data set. Using Baram
thinning with k′ = 6 reaches the best possible ratio – even better than without thinning.

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 1186–1197, 2006.
©Springer-Verlag Berlin Heidelberg 2006

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 5 10 15 20 25 30

re
co

gn
iti

on
 ra

te

thinning k’

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9

k=10
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30

re
je

ct
io

n
ra

te

thinning k’

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9

k=10

Figure 10. Error versus rejection rate of Baram using different parameter k′ for thinning and
different parameter k for classification with unanimous voting.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 0.1 0.2 0.3 0.4 0.5

er
ro

r r
at

e

rejection rate

without thinning
thinning k’=1
thinning k’=2
thinning k’=6

thinning k’=20

Figure 11. Rejection versus error rate of k-NN
classification (varying k) with unanimous vot-
ing on training data thinned by Baram using
several parameters k′.

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.01 0.02 0.03 0.04 0.05

er
ro

r r
at

e

query time in ms

without thinning
thinning k’=1
thinning k’=6
thinning k’=9

thinning k’=20
GSASH thinning

Figure 12. Query time versus error rate of
1-ANN classification for different parameters ε
and training data thinned by Baram with differ-
ent parameters k′ and also GSASH thinning.

Using higher approximation or smaller training data for nearest neighbor classifica-
tion leads to a higher error rate. Which ratio between query time and error should be
chosen highly depends on the application. The best methods at a given query time form
an optimal ratio curve. As shown in Figure 12, 1-ANN classification trained with data
thinned by Baram with k′ = 1 is in general worse than 1-ANN trained with the origi-
nal data. A smaller error rate with respect to a given query time can be obtained using
Baram thinning with e.g. k′ = 9. Using these Baram thinned data, which are reduced
to 66.2% of the original data, the ANN classification with ε = 5 attains a query time of
12.2µs with an error rate of 18.4%. For thinning parameter k′ > 9, the methods lie on
the ratio curve of the original data (see Figure 12).

6 Conclusions

We showed that thinning methods and query structures for k-NN are well suited to re-
duce memory requirements and/or classification times for generic object recognition.
The experiments showed that, for optimal speed of exact queries, the bucket size of the

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 1186–1197, 2006.
©Springer-Verlag Berlin Heidelberg 2006

kd-tree is important and independent of k. For ANN, a small bucket size and a large
error bound ε yield the fastest queries. Furthermore, we developed k′-NN extensions
of CNN, RNN and Baram and showed that they allow to tune the trade-off between
data reduction and classifier degradation. As expected, the classical versions of the al-
gorithms (k′ = 1) yield maximum degradation. The best trade-off between query time
and error rate was reached for a combination of k′-NN Baram and ANN. Gabriel and
GSASH thinning turned out not to work well on the high-dimensional ETH-80 data.

References

1. Mattern, F., Denzler, J.: Comparison of appearance based methods for generic object recog-
nition. Pattern Recognition and Image Analysis 14 (2004) 255–261

2. Toussaint, G.: Geometric proximity graphs for improving nearest neighbor methods in
instance-based learning and data mining. Int. J. of Comp. Geom. & Appl. 15 (2005) 101–150

3. Clarkson, K.: A randomized algorithm for closest-point queries. SIAM Journal of Comput-
ing 17 (1988) 830–847

4. Dobkin, D., Lipton, R.: Multidimensional searching problems. SIAM Journal of Computing
2 (1976) 181–186

5. Meisner, S.: Point location in arrangements of hyperplanes. Information and Computation 2
(1993) 286–303

6. Yao, A., Yao, F.: A general approach to d-dimension geometric queries. In: 17th Symposium
on Theory of Computing. (1985) 163–168

7. Friedman, J., Bentley, J., Finkel, R.: An algorithm for finding best matches in logarithmic
expected time. ACM Transactions on Mathematical Software 3 (1977) 209–226

8. Maneewongvatana, S., Mount, D.: Analysis of approximate nearest neighbor searching with
clustered point sets. In: The DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science. Volume 59. (2002) 105–123

9. Arya, S., Mount, D.: Approximate nearest neighbor queries in fixed dimensions. In: Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms. (1993) 271–280

10. Arya, S., Mount, D., Netanyahu, N., Silverman, R., Wu, A.: An optimal algorithm for ap-
proximate nearest neighbor searching. Journal of the ACM 45 (1998) 891–923

11. Hart, P.E.: The condensed nearest neighbor rule. IEEE Transactions on Information Theory
14 (1968) 515–516

12. Gates, W.: The reduced nearest neighbor rule. IEEE Transactions on Information Theory 18
(1972) 431–433

13. Baram, Y.: A geometric approach to consistent classification. Pattern Recognition 13 (2000)
177–184

14. Olorunleke, O.: Decision Rules for Classification: Classifying Cars into City-Cycle Miles
per Gallon Groups. Dep. of Computer Science, University of Saskatchewan, Canada (2003)

15. Toussaint, G., Bhattacharya, B., Poulsen, R.: The application of voronoi diagrams to non-
parametric decision rules. In: 16th Symp. on Comp. Science and Statistics. (1984) 97–108

16. Sánchez, J., Pla, F., Ferri, F.: Prototype selection for the nearest neighbor rule through prox-
imity graphs. Pattern Recognition Letters 18 (1997) 507–513

17. Mukherjee, K.: Application of the Gabriel graph to instance based learning algorithms. PhD
thesis, Simon Fraser University (2004)

18. Leibe, B., Schiele, B.: Analyzing Appearance and Contour Based Methods for Object Cate-
gorization. In: Int. Conf. on Comp. Vision and Pattern Recog. Volume 2. (2003) 409–415

J. Blanc-Talon et al. (Eds.): ACIVS 2006, LNCS 4179, pp. 1186–1197, 2006.
©Springer-Verlag Berlin Heidelberg 2006

