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Abstract—Estimating causal relations is vital in understanding
the complex interactions in multivariate time series. Non-linear
coupling of variables is one of the major challenges in accurate
estimation of cause-effect relations. In this paper, we propose
to use deep autoregressive networks (DeepAR) in tandem with
counterfactual analysis to infer nonlinear causal relations in
multivariate time series. We extend the concept of Granger
causality using probabilistic forecasting with DeepAR. Since deep
networks can neither handle missing input nor out-of-distribution
intervention, we propose to use the Knockoffs framework (Barber
and Candès, 2015) for generating intervention variables and
consequently counterfactual probabilistic forecasting. Knockoff
samples are independent of their output given the observed
variables and exchangeable with their counterpart variables
without changing the underlying distribution of the data. We
test our method on synthetic as well as real-world time series
datasets. Overall our method outperforms the widely used vec-
tor autoregressive Granger causality and PCMCI in detecting
nonlinear causal dependency in multivariate time series.

Index Terms—Causal Inference, Deep networks, Knockoffs,
Non-linear Time series, Counterfactuals

I. INTRODUCTION

Improving our understanding of cause-effect relationships
when analyzing real-world complex systems, e.g., economy,
climate- and neuro-sciences, helps in addressing questions
like what factors affect our health, the economy, climate, and
which actions need to be taken to mitigate the adverse effects
and enhance beneficial effects? One of the main challenges
in inferring cause-effect relations in such systems is the
non-linear dependency among variables, which often leads
to inaccurate causal discovery. To mitigate this issue, we
propose to use deep recurrent networks in combination with
counterfactual analysis to infer nonlinear causal relations in
multivariate time series. We apply the concept of Granger
causality (GC) [1] using probabilistic forecasting with deep
autoregressive (DeepAR) networks [2]. GC makes use of the
following two properties: (i) Temporal precedence: a cause is
followed by its effect and (ii) Physical influence: changing
cause alters the effects. It estimates the extent by which a
variable Xi helps in the prediction of another variable Xj .
The impact of the inclusion of Xi in the model is estimated
by comparing the prediction of Xj with and without Xi. Due
to its practical implementation, GC has been intensively used

in various fields i.e. neuroscience, climatology, finance, etc.,
for discovering causal graphs in time series [1], [3]–[5].

A major shortcoming of Granger causality however is
in its assumption of linear dependency in the observational
data. Deep networks excel in learning complex and nonlinear
relations. In this paper, we use DeepAR networks [2] to
model non-linear relations in multivariate time series. DeepAR
characterizes conditioning on observed variables and extracts
hidden features from the time series which helps in dealing
with spurious associations that might occur due to confounders
such as periodic cycles and trends. However, deep networks
can not handle missing input or out-of-distribution data. To
deal with this issue, we propose to use the theoretically well-
established Knockoffs framework [6] to generate intervention
variables. The Knockoffs framework was originally developed
as a variable selection tool with a controllable false discovery
rate in a prediction model. Knockoff samples are statistically
null-variables, i.e., independent of the model output, and
can be swapped with the original variables without changing
the underlying distribution of the data. The in-distribution
nature of the knockoffs is important when used to generate
counterfactuals for causal discovery because the trained deep
networks expect test data to be within the same distribution
as training data. Moreover, knockoff samples control false
discovery rate in causal inference as it holds as low correlation
with the candidate variable as possible.

Causal hierarchy operates in three layers (i) Association
(ii) Intervention and (iii) Counterfactual [7]. We use coun-
terfactuals where questions like what if certain thing has
been done differently? Or is it certain action that causes the
change? are addressed. A counterfactual outcome describes a
cause-effect scenario such that if event Xi had not occurred,
event Xj would not have happened. Counterfactuals have
been used for feature selection, time series explanation, and
model interpretability [8], [9]. We generate counterfactual
output by substituting one of the observed variables at a time
with its knockoff samples and estimate its causal impact by
measuring its effect on the forecast error assuming that the
used multivariate time series are stationary. Moreover, we
assume causal sufficiency, i.e., the set of observed variables
includes all possible causes, and there exist no hidden con-
founders. We compare the causal inference performance of the



proposed method with the widely used vector autoregressive
Granger causality (VAR-GC) and PCMCI [10] using synthetic
as well as real river discharges datasets. We show that our
method outperforms these methods in estimating nonlinear
causal links. To highlight the advantage of using the Knockoffs
framework, we carry out a comparison using different methods
for generating counterfactuals. More specifically, we compare
the causal inference results of when generating counterfactuals
using out-of-distribution, a constant value of the distribution-
mean, and Knockoffs samples.

The remainder of this paper is organized as follows. In Sec-
tion II of the paper, we cover the related work. Methodolog-
ical background are presented in Section III. In Section IV,
we describe in detail the proposed causal inference method.
Experimental results are presented and discussed in Section
V. The work is concluded in Section VI of the paper.

II. RELATED WORK

Several methods in the literature have addressed the chal-
lenge of causal inference in nonlinear multivariate time series.
The method of [11] uses structured multilayer perceptrons and
recurrent neural networks combined with sparsity-inducing
penalties on the weights. It monitors the weights assigned to
each time series when predicting the target time series. The
authors of [12] also proposed a similar solution for causal
discovery using deep learning where the architecture of the
neural network is partially utilized from data to infer causality
among variables. They chose to interpret the weights of a
neural network under some constraints. The method trains as
many neural networks models as the number of variables in
the dataset, where one variable is the target and the rest of
the variables are inputs to predict the target. Analyzing the
weights of the network reveals whether there is a relationship
between a variable and the target: if any of the paths between a
variable and the target has a weight value as 0, the target does
not have a causal link with that particular variable. However,
it is challenging to extract any clear structure of the data
from the deep networks that can be used for interpretability
[13]. Attention-based convolutional neural networks have also
been used for causal discovery, where they utilize the internal
parameters of the networks to find out time delay in the causal
relationship between variables [14].

The PCMCI [10] method estimates causality in multivari-
ate time series using either linear or non-linear conditional
independent tests. PCMCI works in two steps, first, it deter-
mines the causal parents of each variable and then applies
conditional independence test to estimate causality between
variables. PCMCI has been implemented in [15] to estimate
causal networks in biosphere-atmosphere interaction. PCMCI
is also used along with dimensionality reduction to infer
causality in ecological time series data [16] where conditional
independence tests are applied on the reduced feature space.

Cause-effect variational autoencoders (CEVAE) [17] esti-
mate non-linear causal links in the presence of hidden con-
founders by training two separate networks, with and without
intervention. This method however estimates the causal link of

two variables only. The extended version of CEVAE to time
series has been developed by integrating the domain-specific
knowledge for inferring nonlinear causality in ecological time
series [18]. Additive models are also used to estimate non-
linear interactions in time series, where the past of each series
may have an additive non-linear effect that decouples across
time series [19], however, it may overlook important non-
linear relation between variables and therefore may fail to
properly identify Granger causal links [11]. Counterfactuals
are used by [9] to estimate feature importance. They substi-
tute features to obtain counterfactuals and estimate feature
importance by finding their impact on the output. Unlike
our approach, it does not estimate causal relations in time
series and does not use knockoff in-distribution samples to
reduce the false discovery rate. Knockoffs have been used
to generate counterfactuals to explain the decision of deep
image classifiers [20]. To deal with spurious causal links that
may result from periodic patterns and trends in time series,
the method in [21], [22] proposed to use time-frequency
causality analysis. However, these methods use the spectral
representation of linear VAR-GC and hence may not be able
to deal with nonlinear causal relations.

III. METHODOLOGICAL BACKGROUND

In this section we will briefly introduce the necessary back-
ground on DeepAR [2], the fundamental concept of Knockoffs
framework [12], as well as VAR-GC.

A. DeepAR

DeepAR [2] is a powerful method mainly used for multi-
variate non-linear non-stationary time series forecasting. It is
based on autoregressive recurrent neural networks, which learn
a global model from the history of all the related time-series
in the dataset. DeepAR is based on previous work on deep
learning for time series data [23] and uses a similar LSTM-
based recurrent neural network architecture to the probabilistic
forecasting problem. Few key attributes of DeepAR compared
to classical approaches and other global forecasting methods
are: It extracts hidden features in the form of seasonal patterns
and trends in the data, and characterizes conditioning on
observed variables and extracted features during inference.
Moreover, in this probabilistic forecasting method, lesser
hand-crafted feature engineering is needed to capture complex,
group-dependent behavior.

The training and forecast processes of the DeepAR is shown
in Fig. 1. Let zi, i = 1, . . . , N be the N−variate time series.
Each time series zi,t, t = 1, . . . , r is a realization of length
r real-valued discrete stochastic process Zi, i = 1, . . . , N . At
each time step t, the inputs to the network are the observed
target value at the previous time step zi,t−1 as well as the
previous network output hi,t−1. The network output hi,t =
h(hi,t−1, zi,t−1, xi,t,Θ) then used to compute the parameters
θi,t = θ(hi,t−1,Θ) of the likelihood `(z|θ), which is used for
training the model parameters. For prediction, the past of the
time series zi,t is fed in for t < t0, where t0 represents the
first value in the forecast horizon, then in the forecast horizon



for t ≥ t0 a sample ẑi,t ∼ `(.|θi,t) is drawn and fed back for
the next point until the end of the prediction range t = t0 +T
generating one sample trace. This sampling process is repeated
iteratively to generate multiple traces of the variables in the
forecast horizon representing the joint predicted distribution.

B. Knockoffs

The Knockoffs framework was developed by Barber and
Candès in 2015 as a tool for estimating feature importance
using conditional independence testing with controllable false
discovery rate [24]. Given a set of observed variables Z =
(Z1, . . . , Zn) with known distribution PZ , and a predictive
model, the knockoffs of the observed variables, defined as
Z̃ = (Z̃1, . . . , Z̃n), are constructed to be in-distribution null-
variables and as decorrelated as possible from the original
data. They can be swapped with the original variables without
changing the underlying distribution of the data. This is
accomplished by ensuring that the correlation between the
generated knockoffs is the same as the correlation between
the original variables [24]. To be null-variables, knockoffs do
not contain any information about the target variable. More
specifically, knockoff variables should satisfying the pairwise
exchangeability condition [24]

(Z, Z̃)swap(A)
d
= (Z̃, Z) (1)

for any subset A ⊆ 1, . . . , n, here d
= represents equal distribu-

tions. The (Z, Z̃)swap(A) is obtained from (Z, Z̃) by swapping
the entries Zj and Z̃j for each j ∈ A.

The knockoff mechanism can be thought of as generating
a probability distribution PZ̃|Z(.|z) which is the conditional
distribution of Z̃ given Z = z chosen such that the obtained
joint distribution of (Z, Z̃) which is equal to

PZ(z)PZ̃|Z(z̃|z),

is pairwise (zj , z̃j) symmetric and satisfy the exchangeability
condition in (1). For Gaussian variables with Gaussian distri-
bution PZ = Nn(0n,Σ), [25] shows that knockoffs Zi,∗ can
be drawn from the conditional distribution

PZ̃|Z(.|Zi,∗) = Nn((In − SΣ−1)Zi,∗, 2S − SΣ−1S) (2)

for any fixed diagonal matrix S satisfying 0 ≤ S ≤ 2Σ. This
leads to the joint distribution of (Zi,∗, Z̃i,∗) being equal to

N2n

(
02n,

(
Σ Σ− S

Σ− S Σ

))
,

which satisfies the pairwise exchangeablity condition in (1).

C. VAR Granger Causality

GC is based on the idea that cause precedes its effects and
can help in their prediction. Here we briefly describe how VAR
is used to infer GC. Let zi, i = 1, . . . , N be the time series of
N variables. Each time series zi,t, t = 1, . . . , r is a realization
of length r real-valued discrete stationary stochastic process
Zi, i = 1, . . . , N . These N time-series can be represented by
a pth order VAR of the form

z1,t...
zN,t

 =

p∑
m=1

Am

z1,t−m...
zN,t−m

+

 ε1(t)
...

εN (t)

 (3)

The residuals εi, i = 1, . . . , N form a white noise stationary
process with covariance matrix

∑
. The model parameters

at time lags m = 1, . . . , p comprise the matrix Am =
[aij(m)]N×N . Let

∑
j be the covariance matrix of the residual

εj associated to zj using the model in (3), and let
∑i−

j denote
the covariance matrix of this residual after missing out the ith
row and column in Am. The VAR-GC of zi on zj conditioned
on all other variables is defined by [26].

γi→j = ln
|
∑i−

j |
|
∑

j |
(4)

IV. CAUSAL EFFECT ESTIMATION USING DEEPAR AND
KNOCKOFF COUNTERFACTUALS

A. Granger causality using probabilistic forecasting

Let zi, i = 1, . . . , N be the N−variate time series. Each
time series zi,t, t = 1, . . . , r is a realization of length r real-
valued discrete stochastic process Zi, i = 1, . . . , N . Through-
out our study, we make use of the following two assumptions.

- Stationarity: Zi, i = 1, . . . , N is a stationary stochastic
process.

- Causal Sufficiency: The set of observed variables Zi, i =
1, . . . , N includes all of the common causes of pairs in
Z.

We train and optimize DeepAR by providing multivariate
time series zi,t, i = 1, . . . , N ; t = 1 . . . , r as input. For each
realization of the time series zi,t, we calculate forecast error
as mean absolute percentage error (MAPE) using the trained
model.

MAPE =
1

r

r∑
t=1

| zi,t − ẑi,t |
| zi,t |

(5)

Where zi,t is the actual value of time series i at time step t,
and ẑi,t is the predicted value which is defined by the mean of
the probability distribution P (zi,to:T |zi,1:to−1) at time step t
in the forecast horizon. To know the cause-effect relationship
of zi on zj , we intervene on variable zi, i = 1, . . . , N with
its knockoffs z̃i, and notice the influence on the prediction
of a target variable zj , j 6= i by comparing the obtained
counterfactual output with the actual output. In analogy to the
definition of VAR-GC of zi on zj in (4), we define our metric
for estimating the non-linear Granger causality of of zi on zj
conditioned on all other variables by the causal significance
score (CSSi→j) as follows.

CSSi→j = ln
MAPEi

j

MAPEj
(6)

where MAPEj and MAPEi
j denote the mean absolute percent-

age error when predicting zj before and after intervention on
zi.



Fig. 1: Architecture of DeepAR network showing training (left) and forecast (right) phases [2].

B. Counterfactual generation

In this work, we investigate multiple ways to generate
counterfactuals, i.e. distribution mean, out-of-distribution, and
knockoff samples as described below. However, we mainly
emphasize the use of knockoffs to generate counterfactuals
for causal discovery in time series.

- Distribution mean: Here we replace each value zi,t of the
time series zi with the mean zi = 1

r

∑r
t=1 zi,t.

- Out-of-distribution: In this type of intervention, the can-
didate variable zi that belongs to data distribution Di is
replaced with a variable z from another data distribution

D such that D
d

6= Di. Moreover, zi is selected to be as
uncorrelated with the original variable zi as possible.

- Knockoffs: The Knockoffs of the observed variables
Z = (Z1, . . . , Zn) are constructed to be in-distribution
null-variables as decorrelated as possible from the orig-
inal data. To this end, we implement DeepKnockoffs
[12], a framework for sampling approximate knockoffs
using deep generative models. The knockoff samples
are generated using a mixture of Gaussian models as
implemented in [27]. The procedure consists of first
sampling the mixture assignment variable from the pos-
terior distribution. The knockoffs are then sampled from
the conditional distribution of the knockoffs given the
original variables and the sampled mixture assignment
such that the exchangability condition is satisfied. We
obtain knockoffs Z̃j , j ⊆ 1, · · · , n, for all variables in
the multivariate time series and substitute one variable
at a time Zj with Z̃j for each j ⊆ 1, · · · , n for causal
inference.

C. Causal hypothesis testing

We calculate CSSi→j using (6) by incorporating MAPEj

and MAPEi
j for each realization zj,t of the stochastic process

Zj , j = 1, . . . , N before and after intervention on zi,t, i 6= j.
Since we have multiple realizations for each time series, as a
result, we get a distribution of values of CSSi→j for each pair
of time series zi,t and zj,t. The null hypothesis H0: zi does not
Granger cause zj , is accepted if the mean of the distribution of
CSSi→j is close to zero. In case the mean of the distribution is
significantly different from zero, the alternate hypothesis H1:

zi Granger causes zj is accepted. The causal relationship for
each pair of time series is estimated iteratively and ultimately
the full causal graph of the multivariate time series is extracted.

V. EXPERIMENTS

We conducted experiments on synthetic as well as a real
datasets. Experiments are performed on multiple realizations
of the time series. For synthetic data, we set r = 200 as the
length of each realization zi,t of the time series. The prediction
length T is set to 14. We trained our model for 150 epochs.
The number of layers and cells in each layer of the network
is set to 4 and 40 respectively while dropout is 0.05–0.1. We
estimate causal link among time series by hypothesis testing
on the distribution of CSSi→j as explained in Section IV. To
quantify the performance of our method, we calculate the two
metrics: false positive rate (FPR) and F-score where

FPR =
FP

FP + TN
(7)

F-score =
TP

TP + 0.5(FP + FN)
(8)

Here, TP is the number of causal links that exist in the causal
graph and also detected by the method; TN is the number of
causal links that neither exist in the causal graph nor detected
by the method; FP is the number of causal links that do not
exist in the causal graph but detected by the method and FN
is the number of the causal links that exist in the causal graph
but not detected by the method.

A. Synthetic data
To test the proposed method on synthetic data we generate

time series Xi(t), i = 1, . . . , 4, with seasonal pattern and non-
linear relationships among them as follows. This synthetic
model simulate a test model of climate-ecosystem interactions
as suggested in [15], where X1 denotes global radiation Rg ,
X2 represents air temperature Tair while X3 and X4 denote
gross primary production GPP and ecosystem respiration Reco

respectively.

X1(t) = N (0, 1) + |cos(2πft)|
X2(t) = c1X2(t− τ1) + c2X1(t− τ2) + η1(t)

X3(t) = c3X1(t− τ3) ∗X2(t− τ4) + η2(t)

X4(t) = c4X3(t− τ5) ∗ β
X2(t−τ6)−Q

10 + η3(t) (9)



The coupling coefficients and time lags are represented
as c1, c2, c3, c4, β and τ1, τ2, . . . , τ5 respectively. The
notation η, termed as “intrinsic” or “dynamical noise”, which
represents data from uncorrelated, normally distributed noise.
We set η1, η2, η3 as Gaussian with 0 mean and variances [0.30,
0.35, 0.25]. The value for the coupling coefficients c1 to c4
and β were set to [0.95, 0.80, 0.50, 0.75] and [0.2, 0.4, ...
, 1.0], respectively. The lags were given only integer values
in the range [0, 10] and Q is set to 10 which is referred to
reference temperature in the test data model used in [15]. The
seasonal part of X1(t) is |cos(2πft)| where f represents the
frequency which takes the value 150 and t is the time that
varies from 0 to 3000. We keep changing β, the coefficient of
non-linear relationship between X2 and X4, in the test model
every simulation while rest of the parameters are kept intact.
We are interested to see the consistency and causal estimation
capability of our method in comparison with PCMCI and
VAR-GC when β is increased.

B. Real data

As a real-world application of our method, we carry out
causal analysis of average daily discharges of rivers in the
upper Danube basin, provided by the Bavarian Environmental
Agency 1. We use measurements of three years (2017-2019)
from the Iller at Kempten Kt, the Danube at Dillingen Dt, and
the Isar at Lenggries Lt as considered by [28]. While the Iller
flows into the Danube upstream of Dillingen with the water
from Kempten reaching Dillingen within a day approximately,
the Isar reaches the Danube downstream of Dillingen. Based
on the stated scenario, we expect a contemporaneous link
Kt → Dt and no direct causal links between the pairs Kt,
Lt and Dt, Lt. Since all variables may be confounded by
rainfall or other weather conditions, this choice allows testing
the ability of the methods to detect and distinguish directed
and bidirectional links.

C. Results

For synthetic data model, we demonstrate results in Fig. 2
which shows the F-score values for PCMCI, VAR-GC, and
DeepAR with all three types of substitution methods rep-
resented as DeepAR-Knockoffs, DeepAR-OutDist, DeepAR-
Mean. The figure illustrates the performance of these methods
in response to an increase in the coefficient of non-linearity β
between X2 and X4. VAR-GC assumes linearity and hence
yields a lower F-score as the dataset contains non-linear
relations among variables in the synthetic data model. PCMCI
however has better results compare to VAR-GC because of
using a non-linear method, Gaussian process distance correla-
tion (GDPC), for testing conditional independence. DeepAR-
Knockoffs, yields better results in terms of F-score compare to
VAR-GC and PCMCI. DeepAR-OutDist suffers from a high
false discovery rate because of using out-of-distribution vari-
ables as substitution and hence yield lower F-score throughout
the experiment. DeepAR-Mean performs better than DeepAR-
OutDist but falls behind DeepAR-Knockoffs. The plot in Fig

1https://www.gkd.bayern.de

Fig. 2: F-score of given methods in response to increase in the
coefficient of non-linear relationship β between X2 and X4.

Fig. 3: False positive rate (FPR) of all methods for increasing
β between X2 and X4 in the synthetic data model.

3 shows FPR in response to increase in the non-linearity
coefficient β. It can be seen that VAR-GC yields a high
FPR due to its assumption of linearity. Besides that, DeepAR-
OutDist also produces a high number of false positives, be-
cause outside-distribution samples introduce bias in the model
and hence results in detection of false causal links. PCMCI,
DeepAR-Mean, and DeepAR-Knockoffs however have better
false discovery rates.

For real data, the contemporaneous link Kt → Dt is cor-
rectly detected by DeepAR-Knockoffs, VAR-GC and PCMCI
as shown in Table I. Our method does not report any causal
link Dt → Kt however VAR-GC and PCMCI wrongly finds
Dt → Kt. PCMCI and VAR-GC detected a causal link
Kt → Lt and Lt → Kt which may be because of the weather
acting as a confounder. DeepAR-Knockoffs does not report a
causal link between Kt and Lt in any direction as the method
has the capability of handling confounders, such as seasonal
patterns, in a better way. Our method wrongly finds a causal



link Lt → Dt, however, VAR-GC and PCMCI do not detect
such a causal relationship. Due to extreme events in the river
discharges data caused by heavy rainfall, the assumption of
stationarity is expected to be violated, which is why VAR-GC
and PCMCI report these false links. In comparison DeepAR-
Knockoffs correctly discovers the expected links in the river
discharges data, except a single false link.

TABLE I: Expected and detected causal links in river dis-
charges data by VAR-GC, PCMCI and DeepAR-Knockoffs

Causal
links

Expected VAR-GC PCMCI DeepAR-
Knockoffs

Kt → Dt Yes Yes Yes Yes
Kt → Lt No Yes Yes No
Dt → Kt No Yes Yes No
Dt → Lt No Yes No No
Lt → Kt No Yes Yes No
Lt → Dt No No No Yes

VI. CONCLUSION

We proposed a novel method for inferring cause-effect
relations in non-linear multivariate time series. Since deep
networks can not handle out-of-distribution intervention, we
proposed to use probabilistic forecasting with DeepAR in
combination of knockoffs-based counterfactuals for estimating
nonlinear Granger causality. We applied our method on syn-
thetic and real river discharges datasets. Our results confirm
that using knockoff samples to generate counterfactuals yields
better results in comparison to using the mean- and out-
of-distribution as intervention methods. Results also indicate
that the proposed method outperforms VAR-GC and PCMCI
methods in estimating non-linear relations and dealing with
confounders. It should be noted however that the better per-
formance of the proposed method comes along with the higher
computational load associated with using deep networks spe-
cially for large multivariate time series.
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